"docs/backend/send_request.ipynb" did not exist on "c77c1e05badb5f5bf774872c3498b21eeb0aef20"
logger.py 13.8 KB
Newer Older
Scott Zhu's avatar
Scott Zhu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

16
17
18
"""Logging utilities for benchmark.

For collecting local environment metrics like CPU and memory, certain python
19
packages need be installed. See README for details.
20
"""
Scott Zhu's avatar
Scott Zhu committed
21
22
23
24
25
26
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import datetime
import json
27
import multiprocessing
Scott Zhu's avatar
Scott Zhu committed
28
29
import numbers
import os
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
30
import threading
31
import uuid
Scott Zhu's avatar
Scott Zhu committed
32

33
34
from six.moves import _thread as thread
from absl import flags
Scott Zhu's avatar
Scott Zhu committed
35
import tensorflow as tf
36
from tensorflow.python.client import device_lib
Scott Zhu's avatar
Scott Zhu committed
37

38
39
METRIC_LOG_FILE_NAME = "metric.log"
BENCHMARK_RUN_LOG_FILE_NAME = "benchmark_run.log"
Scott Zhu's avatar
Scott Zhu committed
40
41
_DATE_TIME_FORMAT_PATTERN = "%Y-%m-%dT%H:%M:%S.%fZ"

42
FLAGS = flags.FLAGS
Scott Zhu's avatar
Scott Zhu committed
43

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
44
45
46
# Don't use it directly. Use get_benchmark_logger to access a logger.
_benchmark_logger = None
_logger_lock = threading.Lock()
Scott Zhu's avatar
Scott Zhu committed
47
48


49
def config_benchmark_logger(flag_obj=None):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
50
51
52
53
  """Config the global benchmark logger"""
  _logger_lock.acquire()
  try:
    global _benchmark_logger
54
55
56
57
58
    if not flag_obj:
      flag_obj = FLAGS

    if (not hasattr(flag_obj, 'benchmark_logger_type') or
        flag_obj.benchmark_logger_type == 'BaseBenchmarkLogger'):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
59
      _benchmark_logger = BaseBenchmarkLogger()
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    elif flag_obj.benchmark_logger_type == 'BenchmarkFileLogger':
      _benchmark_logger = BenchmarkFileLogger(flag_obj.benchmark_log_dir)
    elif flag_obj.benchmark_logger_type == 'BenchmarkBigQueryLogger':
      from official.benchmark import benchmark_uploader as bu # pylint: disable=g-import-not-at-top
      bq_uploader = bu.BigQueryUploader(gcp_project=flag_obj.gcp_project)
      _benchmark_logger = BenchmarkBigQueryLogger(
          bigquery_uploader=bq_uploader,
          bigquery_data_set=flag_obj.bigquery_data_set,
          bigquery_run_table=flag_obj.bigquery_run_table,
          bigquery_metric_table=flag_obj.bigquery_metric_table,
          run_id=str(uuid.uuid4()))
    else:
      raise ValueError('Unrecognized benchmark_logger_type: %s',
                       flag_obj.benchmark_logger_type)

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
75
76
77
78
79
80
81
  finally:
    _logger_lock.release()
  return _benchmark_logger


def get_benchmark_logger():
  if not _benchmark_logger:
82
    config_benchmark_logger()
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
83
84
85
86
87
88
89
90
  return _benchmark_logger


class BaseBenchmarkLogger(object):
  """Class to log the benchmark information to STDOUT."""

  def log_evaluation_result(self, eval_results):
    """Log the evaluation result.
91

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
92
    The evaluate result is a dictionary that contains metrics defined in
93
94
95
96
    model_fn. It also contains a entry for global_step which contains the value
    of the global step when evaluation was performed.

    Args:
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
97
      eval_results: dict, the result of evaluate.
98
99
    """
    if not isinstance(eval_results, dict):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
100
101
      tf.logging.warning("eval_results should be dictionary for logging. "
                         "Got %s", type(eval_results))
102
103
      return
    global_step = eval_results[tf.GraphKeys.GLOBAL_STEP]
104
    for key in sorted(eval_results):
105
106
107
      if key != tf.GraphKeys.GLOBAL_STEP:
        self.log_metric(key, eval_results[key], global_step=global_step)

Scott Zhu's avatar
Scott Zhu committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
122
123
124
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      tf.logging.info("Benchmark metric: %s", metric)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
125

126
127
128
  def log_run_info(self, model_name, dataset_name, run_params):
    tf.logging.info("Benchmark run: %s",
                    _gather_run_info(model_name, dataset_name, run_params))
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153


class BenchmarkFileLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to local disk."""

  def __init__(self, logging_dir):
    super(BenchmarkFileLogger, self).__init__()
    self._logging_dir = logging_dir
    if not tf.gfile.IsDirectory(self._logging_dir):
      tf.gfile.MakeDirs(self._logging_dir)

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
154
155
156
157
158
159
160
161
162
163
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      with tf.gfile.GFile(
          os.path.join(self._logging_dir, METRIC_LOG_FILE_NAME), "a") as f:
        try:
          json.dump(metric, f)
          f.write("\n")
        except (TypeError, ValueError) as e:
          tf.logging.warning("Failed to dump metric to log file: "
                             "name %s, value %s, error %s", name, value, e)
164

165
  def log_run_info(self, model_name, dataset_name, run_params):
166
167
168
169
170
171
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
172
173
174
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
175
    """
176
    run_info = _gather_run_info(model_name, dataset_name, run_params)
177
178

    with tf.gfile.GFile(os.path.join(
179
        self._logging_dir, BENCHMARK_RUN_LOG_FILE_NAME), "w") as f:
180
181
182
183
184
185
186
187
      try:
        json.dump(run_info, f)
        f.write("\n")
      except (TypeError, ValueError) as e:
        tf.logging.warning("Failed to dump benchmark run info to log file: %s",
                           e)


188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
class BenchmarkBigQueryLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to BigQuery data store."""

  def __init__(self,
               bigquery_uploader,
               bigquery_data_set,
               bigquery_run_table,
               bigquery_metric_table,
               run_id):
    super(BenchmarkBigQueryLogger, self).__init__()
    self._bigquery_uploader = bigquery_uploader
    self._bigquery_data_set = bigquery_data_set
    self._bigquery_run_table = bigquery_run_table
    self._bigquery_metric_table = bigquery_metric_table
    self._run_id = run_id

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to bigquery.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      # Starting new thread for bigquery upload in case it might take long time
      # and impact the benchmark and performance measurement. Starting a new
      # thread might have potential performance impact for model that run on
      # CPU.
      thread.start_new_thread(
          self._bigquery_uploader.upload_benchmark_metric_json,
          (self._bigquery_data_set,
           self._bigquery_metric_table,
           self._run_id,
           [metric]))

  def log_run_info(self, model_name, dataset_name, run_params):
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
    """
    run_info = _gather_run_info(model_name, dataset_name, run_params)
    # Starting new thread for bigquery upload in case it might take long time
    # and impact the benchmark and performance measurement. Starting a new
    # thread might have potential performance impact for model that run on CPU.
    thread.start_new_thread(
        self._bigquery_uploader.upload_benchmark_run_json,
        (self._bigquery_data_set,
         self._bigquery_run_table,
         self._run_id,
         run_info))

250
def _gather_run_info(model_name, dataset_name, run_params):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
251
252
253
  """Collect the benchmark run information for the local environment."""
  run_info = {
      "model_name": model_name,
254
      "dataset": {"name": dataset_name},
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
255
      "machine_config": {},
256
257
      "run_date": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN)}
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
258
259
  _collect_tensorflow_info(run_info)
  _collect_tensorflow_environment_variables(run_info)
260
  _collect_run_params(run_info, run_params)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
261
262
263
264
265
266
  _collect_cpu_info(run_info)
  _collect_gpu_info(run_info)
  _collect_memory_info(run_info)
  return run_info


267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def _process_metric_to_json(
    name, value, unit=None, global_step=None, extras=None):
  """Validate the metric data and generate JSON for insert."""
  if not isinstance(value, numbers.Number):
    tf.logging.warning(
        "Metric value to log should be a number. Got %s", type(value))
    return None

  extras = _convert_to_json_dict(extras)
  return {
      "name": name,
      "value": float(value),
      "unit": unit,
      "global_step": global_step,
      "timestamp": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN),
      "extras": extras}


286
287
288
289
290
def _collect_tensorflow_info(run_info):
  run_info["tensorflow_version"] = {
      "version": tf.VERSION, "git_hash": tf.GIT_VERSION}


291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def _collect_run_params(run_info, run_params):
  """Log the parameter information for the benchmark run."""
  def process_param(name, value):
    type_check = {
        str: {"name": name, "string_value": value},
        int: {"name": name, "long_value": value},
        bool: {"name": name, "bool_value": str(value)},
        float: {"name": name, "float_value": value},
    }
    return type_check.get(type(value),
                          {"name": name, "string_value": str(value)})
  if run_params:
    run_info["run_parameters"] = [
        process_param(k, v) for k, v in sorted(run_params.items())]

306
def _collect_tensorflow_environment_variables(run_info):
307
308
309
  run_info["tensorflow_environment_variables"] = [
      {"name": k, "value": v}
      for k, v in sorted(os.environ.items()) if k.startswith("TF_")]
310
311
312
313
314
315
316
317
318
319


# The following code is mirrored from tensorflow/tools/test/system_info_lib
# which is not exposed for import.
def _collect_cpu_info(run_info):
  """Collect the CPU information for the local environment."""
  cpu_info = {}

  cpu_info["num_cores"] = multiprocessing.cpu_count()

320
321
322
323
  try:
    # Note: cpuinfo is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import cpuinfo    # pylint: disable=g-import-not-at-top
324

325
326
327
    info = cpuinfo.get_cpu_info()
    cpu_info["cpu_info"] = info["brand"]
    cpu_info["mhz_per_cpu"] = info["hz_advertised_raw"][0] / 1.0e6
328

329
330
331
    run_info["machine_config"]["cpu_info"] = cpu_info
  except ImportError:
    tf.logging.warn("'cpuinfo' not imported. CPU info will not be logged.")
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348


def _collect_gpu_info(run_info):
  """Collect local GPU information by TF device library."""
  gpu_info = {}
  local_device_protos = device_lib.list_local_devices()

  gpu_info["count"] = len([d for d in local_device_protos
                           if d.device_type == "GPU"])
  # The device description usually is a JSON string, which contains the GPU
  # model info, eg:
  # "device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0"
  for d in local_device_protos:
    if d.device_type == "GPU":
      gpu_info["model"] = _parse_gpu_model(d.physical_device_desc)
      # Assume all the GPU connected are same model
      break
349
  run_info["machine_config"]["gpu_info"] = gpu_info
350
351
352


def _collect_memory_info(run_info):
353
354
355
356
357
358
359
360
361
  try:
    # Note: psutil is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import psutil   # pylint: disable=g-import-not-at-top
    vmem = psutil.virtual_memory()
    run_info["machine_config"]["memory_total"] = vmem.total
    run_info["machine_config"]["memory_available"] = vmem.available
  except ImportError:
    tf.logging.warn("'psutil' not imported. Memory info will not be logged.")
362
363
364
365
366
367
368
369
370


def _parse_gpu_model(physical_device_desc):
  # Assume all the GPU connected are same model
  for kv in physical_device_desc.split(","):
    k, _, v = kv.partition(":")
    if k.strip() == "name":
      return v.strip()
  return None
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
371
372
373
374
375
376
377


def _convert_to_json_dict(input_dict):
  if input_dict:
    return [{"name": k, "value": v} for k, v in sorted(input_dict.items())]
  else:
    return []