heads.py 39.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes to build various prediction heads in all supported models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Yeqing Li's avatar
Yeqing Li committed
21
import functools
22
23

import numpy as np
24
import tensorflow as tf
25
26

from official.vision.detection.modeling.architecture import keras_utils
27
from official.vision.detection.modeling.architecture import nn_ops
28
from official.vision.detection.ops import spatial_transform_ops
29
30


Yeqing Li's avatar
Yeqing Li committed
31
class RpnHead(tf.keras.layers.Layer):
32
33
34
35
36
37
  """Region Proposal Network head."""

  def __init__(self,
               min_level,
               max_level,
               anchors_per_location,
Yeqing Li's avatar
Yeqing Li committed
38
39
40
               num_convs=2,
               num_filters=256,
               use_separable_conv=False,
Pengchong Jin's avatar
Pengchong Jin committed
41
               activation='relu',
Yeqing Li's avatar
Yeqing Li committed
42
               use_batch_norm=True,
Pengchong Jin's avatar
Pengchong Jin committed
43
44
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
45
46
47
48
49
50
51
    """Initialize params to build Region Proposal Network head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      anchors_per_location: `int` number of number of anchors per pixel
        location.
Yeqing Li's avatar
Yeqing Li committed
52
53
54
55
56
57
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
58
      activation: activation function. Support 'relu' and 'swish'.
Yeqing Li's avatar
Yeqing Li committed
59
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Pengchong Jin's avatar
Pengchong Jin committed
60
61
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
62
63
64
65
    """
    self._min_level = min_level
    self._max_level = max_level
    self._anchors_per_location = anchors_per_location
Pengchong Jin's avatar
Pengchong Jin committed
66
67
68
69
70
71
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
72
73
74
75
76
77
78
79
80
81
82
83
84
    self._use_batch_norm = use_batch_norm

    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          bias_initializer=tf.zeros_initializer())

Yeqing Li's avatar
Yeqing Li committed
85
    self._rpn_conv = self._conv2d_op(
Yeqing Li's avatar
Yeqing Li committed
86
        num_filters,
87
88
        kernel_size=(3, 3),
        strides=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
89
        activation=(None if self._use_batch_norm else self._activation_op),
90
91
        padding='same',
        name='rpn')
Yeqing Li's avatar
Yeqing Li committed
92
    self._rpn_class_conv = self._conv2d_op(
93
94
95
96
97
        anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-class')
Yeqing Li's avatar
Yeqing Li committed
98
    self._rpn_box_conv = self._conv2d_op(
99
100
101
102
103
        4 * anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-box')
Yeqing Li's avatar
Yeqing Li committed
104

Pengchong Jin's avatar
Pengchong Jin committed
105
    self._norm_activations = {}
Yeqing Li's avatar
Yeqing Li committed
106
107
    if self._use_batch_norm:
      for level in range(self._min_level, self._max_level + 1):
Pengchong Jin's avatar
Pengchong Jin committed
108
        self._norm_activations[level] = norm_activation(name='rpn-l%d-bn' %
Yeqing Li's avatar
Yeqing Li committed
109
                                                        level)
110
111
112
113
114

  def _shared_rpn_heads(self, features, anchors_per_location, level,
                        is_training):
    """Shared RPN heads."""
    features = self._rpn_conv(features)
Yeqing Li's avatar
Yeqing Li committed
115
116
    if self._use_batch_norm:
      # The batch normalization layers are not shared between levels.
Pengchong Jin's avatar
Pengchong Jin committed
117
      features = self._norm_activations[level](
Yeqing Li's avatar
Yeqing Li committed
118
          features, is_training=is_training)
119
120
121
122
123
124
125
126
127
128
129
130
    # Proposal classification scores
    scores = self._rpn_class_conv(features)
    # Proposal bbox regression deltas
    bboxes = self._rpn_box_conv(features)

    return scores, bboxes

  def __call__(self, features, is_training=None):

    scores_outputs = {}
    box_outputs = {}

131
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope('rpn_head'):
132
133
134
135
136
137
138
139
      for level in range(self._min_level, self._max_level + 1):
        scores_output, box_output = self._shared_rpn_heads(
            features[level], self._anchors_per_location, level, is_training)
        scores_outputs[level] = scores_output
        box_outputs[level] = box_output
      return scores_outputs, box_outputs


Yeqing Li's avatar
Yeqing Li committed
140
class FastrcnnHead(tf.keras.layers.Layer):
141
142
143
144
  """Fast R-CNN box head."""

  def __init__(self,
               num_classes,
Yeqing Li's avatar
Yeqing Li committed
145
146
147
148
149
               num_convs=0,
               num_filters=256,
               use_separable_conv=False,
               num_fcs=2,
               fc_dims=1024,
Pengchong Jin's avatar
Pengchong Jin committed
150
               activation='relu',
Yeqing Li's avatar
Yeqing Li committed
151
               use_batch_norm=True,
Pengchong Jin's avatar
Pengchong Jin committed
152
153
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
154
155
156
157
    """Initialize params to build Fast R-CNN box head.

    Args:
      num_classes: a integer for the number of classes.
Yeqing Li's avatar
Yeqing Li committed
158
159
160
161
162
163
164
165
166
167
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the FC layers.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      num_fcs: `int` number that represents the number of FC layers before the
        predictions.
      fc_dims: `int` number that represents the number of dimension of the FC
        layers.
168
      activation: activation function. Support 'relu' and 'swish'.
Yeqing Li's avatar
Yeqing Li committed
169
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Pengchong Jin's avatar
Pengchong Jin committed
170
171
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
172
173
    """
    self._num_classes = num_classes
Yeqing Li's avatar
Yeqing Li committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())

    self._num_fcs = num_fcs
    self._fc_dims = fc_dims
Pengchong Jin's avatar
Pengchong Jin committed
191
192
193
194
195
196
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
197
    self._use_batch_norm = use_batch_norm
Pengchong Jin's avatar
Pengchong Jin committed
198
    self._norm_activation = norm_activation
199

Yeqing Li's avatar
Yeqing Li committed
200
201
202
203
204
205
206
207
208
209
    self._conv_ops = []
    self._conv_bn_ops = []
    for i in range(self._num_convs):
      self._conv_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
210
              activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
211
212
              name='conv_{}'.format(i)))
      if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
213
        self._conv_bn_ops.append(self._norm_activation())
Yeqing Li's avatar
Yeqing Li committed
214
215
216
217
218
219
220

    self._fc_ops = []
    self._fc_bn_ops = []
    for i in range(self._num_fcs):
      self._fc_ops.append(
          tf.keras.layers.Dense(
              units=self._fc_dims,
Pengchong Jin's avatar
Pengchong Jin committed
221
              activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
222
223
              name='fc{}'.format(i)))
      if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
224
        self._fc_bn_ops.append(self._norm_activation(fused=False))
Yeqing Li's avatar
Yeqing Li committed
225
226
227
228
229
230
231
232
233
234
235
236

    self._class_predict = tf.keras.layers.Dense(
        self._num_classes,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        bias_initializer=tf.zeros_initializer(),
        name='class-predict')
    self._box_predict = tf.keras.layers.Dense(
        self._num_classes * 4,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.001),
        bias_initializer=tf.zeros_initializer(),
        name='box-predict')

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  def __call__(self, roi_features, is_training=None):
    """Box and class branches for the Mask-RCNN model.

    Args:
      roi_features: A ROI feature tensor of shape
        [batch_size, num_rois, height_l, width_l, num_filters].
      is_training: `boolean`, if True if model is in training mode.

    Returns:
      class_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes], representing the class predictions.
      box_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes * 4], representing the box
        predictions.
    """

253
254
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope(
        'fast_rcnn_head'):
255
256
      # reshape inputs beofre FC.
      _, num_rois, height, width, filters = roi_features.get_shape().as_list()
Yeqing Li's avatar
Yeqing Li committed
257
258
259

      net = tf.reshape(roi_features, [-1, height, width, filters])
      for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
260
        net = self._conv_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
261
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
262
          net = self._conv_bn_ops[i](net, is_training=is_training)
Yeqing Li's avatar
Yeqing Li committed
263
264
265
266
267

      filters = self._num_filters if self._num_convs > 0 else filters
      net = tf.reshape(net, [-1, num_rois, height * width * filters])

      for i in range(self._num_fcs):
Yeqing Li's avatar
Yeqing Li committed
268
        net = self._fc_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
269
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
270
          net = self._fc_bn_ops[i](net, is_training=is_training)
271

Yeqing Li's avatar
Yeqing Li committed
272
273
      class_outputs = self._class_predict(net)
      box_outputs = self._box_predict(net)
274
275
276
      return class_outputs, box_outputs


Yeqing Li's avatar
Yeqing Li committed
277
class MaskrcnnHead(tf.keras.layers.Layer):
278
279
280
281
  """Mask R-CNN head."""

  def __init__(self,
               num_classes,
Pengchong Jin's avatar
Pengchong Jin committed
282
               mask_target_size,
Yeqing Li's avatar
Yeqing Li committed
283
284
285
               num_convs=4,
               num_filters=256,
               use_separable_conv=False,
Pengchong Jin's avatar
Pengchong Jin committed
286
               activation='relu',
Yeqing Li's avatar
Yeqing Li committed
287
               use_batch_norm=True,
Pengchong Jin's avatar
Pengchong Jin committed
288
289
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
290
291
292
293
    """Initialize params to build Fast R-CNN head.

    Args:
      num_classes: a integer for the number of classes.
Pengchong Jin's avatar
Pengchong Jin committed
294
      mask_target_size: a integer that is the resolution of masks.
Yeqing Li's avatar
Yeqing Li committed
295
296
297
298
299
300
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
301
      activation: activation function. Support 'relu' and 'swish'.
Yeqing Li's avatar
Yeqing Li committed
302
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Pengchong Jin's avatar
Pengchong Jin committed
303
304
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
305
306
    """
    self._num_classes = num_classes
Pengchong Jin's avatar
Pengchong Jin committed
307
    self._mask_target_size = mask_target_size
Yeqing Li's avatar
Yeqing Li committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())
Pengchong Jin's avatar
Pengchong Jin committed
322
323
324
325
326
327
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
328
    self._use_batch_norm = use_batch_norm
Pengchong Jin's avatar
Pengchong Jin committed
329
    self._norm_activation = norm_activation
Yeqing Li's avatar
Yeqing Li committed
330
331
332
333
334
335
336
337
338
    self._conv2d_ops = []
    for i in range(self._num_convs):
      self._conv2d_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
339
              activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
340
341
342
343
344
345
              name='mask-conv-l%d' % i))
    self._mask_conv_transpose = tf.keras.layers.Conv2DTranspose(
        self._num_filters,
        kernel_size=(2, 2),
        strides=(2, 2),
        padding='valid',
Pengchong Jin's avatar
Pengchong Jin committed
346
        activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
347
348
349
350
        kernel_initializer=tf.keras.initializers.VarianceScaling(
            scale=2, mode='fan_out', distribution='untruncated_normal'),
        bias_initializer=tf.zeros_initializer(),
        name='conv5-mask')
351
352
353
354
355
356
357
358
359
360

  def __call__(self, roi_features, class_indices, is_training=None):
    """Mask branch for the Mask-RCNN model.

    Args:
      roi_features: A ROI feature tensor of shape
        [batch_size, num_rois, height_l, width_l, num_filters].
      class_indices: a Tensor of shape [batch_size, num_rois], indicating
        which class the ROI is.
      is_training: `boolean`, if True if model is in training mode.
Yeqing Li's avatar
Yeqing Li committed
361

362
363
364
365
366
367
368
369
370
371
372
    Returns:
      mask_outputs: a tensor with a shape of
        [batch_size, num_masks, mask_height, mask_width, num_classes],
        representing the mask predictions.
      fg_gather_indices: a tensor with a shape of [batch_size, num_masks, 2],
        representing the fg mask targets.
    Raises:
      ValueError: If boxes is not a rank-3 tensor or the last dimension of
        boxes is not 4.
    """

373
    with keras_utils.maybe_enter_backend_graph():
374
375
376
377
      with tf.name_scope('mask_head'):
        _, num_rois, height, width, filters = roi_features.get_shape().as_list()
        net = tf.reshape(roi_features, [-1, height, width, filters])

Yeqing Li's avatar
Yeqing Li committed
378
        for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
379
          net = self._conv2d_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
380
          if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
381
            net = self._norm_activation()(net, is_training=is_training)
382

Yeqing Li's avatar
Yeqing Li committed
383
        net = self._mask_conv_transpose(net)
Yeqing Li's avatar
Yeqing Li committed
384
        if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
385
          net = self._norm_activation()(net, is_training=is_training)
Yeqing Li's avatar
Yeqing Li committed
386
387
388
389

        mask_outputs = self._conv2d_op(
            self._num_classes,
            kernel_size=(1, 1),
390
391
392
393
394
            strides=(1, 1),
            padding='valid',
            name='mask_fcn_logits')(
                net)
        mask_outputs = tf.reshape(mask_outputs, [
Pengchong Jin's avatar
Pengchong Jin committed
395
            -1, num_rois, self._mask_target_size, self._mask_target_size,
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
            self._num_classes
        ])

        with tf.name_scope('masks_post_processing'):
          # TODO(pengchong): Figure out the way not to use the static inferred
          # batch size.
          batch_size, num_masks = class_indices.get_shape().as_list()
          mask_outputs = tf.transpose(a=mask_outputs, perm=[0, 1, 4, 2, 3])
          # Contructs indices for gather.
          batch_indices = tf.tile(
              tf.expand_dims(tf.range(batch_size), axis=1), [1, num_masks])
          mask_indices = tf.tile(
              tf.expand_dims(tf.range(num_masks), axis=0), [batch_size, 1])
          gather_indices = tf.stack(
              [batch_indices, mask_indices, class_indices], axis=2)
          mask_outputs = tf.gather_nd(mask_outputs, gather_indices)
      return mask_outputs


class RetinanetHead(object):
  """RetinaNet head."""

  def __init__(self,
               min_level,
               max_level,
               num_classes,
               anchors_per_location,
               num_convs=4,
               num_filters=256,
425
               use_separable_conv=False,
Pengchong Jin's avatar
Pengchong Jin committed
426
427
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
428
429
430
431
432
433
434
435
436
437
    """Initialize params to build RetinaNet head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      num_classes: `int` number of classification categories.
      anchors_per_location: `int` number of anchors per pixel location.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
      num_filters: `int` number of filters used in the head architecture.
438
439
      use_separable_conv: `bool` to indicate whether to use separable
        convoluation.
Pengchong Jin's avatar
Pengchong Jin committed
440
441
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
442
443
444
445
446
447
448
449
450
    """
    self._min_level = min_level
    self._max_level = max_level

    self._num_classes = num_classes
    self._anchors_per_location = anchors_per_location

    self._num_convs = num_convs
    self._num_filters = num_filters
451
    self._use_separable_conv = use_separable_conv
452
453
454
455
    with tf.name_scope('class_net') as scope_name:
      self._class_name_scope = tf.name_scope(scope_name)
    with tf.name_scope('box_net') as scope_name:
      self._box_name_scope = tf.name_scope(scope_name)
Pengchong Jin's avatar
Pengchong Jin committed
456
457
    self._build_class_net_layers(norm_activation)
    self._build_box_net_layers(norm_activation)
458
459
460
461
462
463
464

  def _class_net_batch_norm_name(self, i, level):
    return 'class-%d-%d' % (i, level)

  def _box_net_batch_norm_name(self, i, level):
    return 'box-%d-%d' % (i, level)

Pengchong Jin's avatar
Pengchong Jin committed
465
  def _build_class_net_layers(self, norm_activation):
466
    """Build re-usable layers for class prediction network."""
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    if self._use_separable_conv:
      self._class_predict = tf.keras.layers.SeparableConv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          padding='same',
          name='class-predict')
    else:
      self._class_predict = tf.keras.layers.Conv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='class-predict')
482
    self._class_conv = []
Pengchong Jin's avatar
Pengchong Jin committed
483
    self._class_norm_activation = {}
484
    for i in range(self._num_convs):
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
      if self._use_separable_conv:
        self._class_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                activation=None,
                padding='same',
                name='class-' + str(i)))
      else:
        self._class_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                activation=None,
                padding='same',
                name='class-' + str(i)))
505
506
      for level in range(self._min_level, self._max_level + 1):
        name = self._class_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
507
        self._class_norm_activation[name] = norm_activation(name=name)
508

Pengchong Jin's avatar
Pengchong Jin committed
509
  def _build_box_net_layers(self, norm_activation):
510
    """Build re-usable layers for box prediction network."""
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    if self._use_separable_conv:
      self._box_predict = tf.keras.layers.SeparableConv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          padding='same',
          name='box-predict')
    else:
      self._box_predict = tf.keras.layers.Conv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='box-predict')
526
    self._box_conv = []
Pengchong Jin's avatar
Pengchong Jin committed
527
    self._box_norm_activation = {}
528
    for i in range(self._num_convs):
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
      if self._use_separable_conv:
        self._box_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                padding='same',
                name='box-' + str(i)))
      else:
        self._box_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                padding='same',
                name='box-' + str(i)))
549
550
      for level in range(self._min_level, self._max_level + 1):
        name = self._box_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
551
        self._box_norm_activation[name] = norm_activation(name=name)
552
553
554
555
556

  def __call__(self, fpn_features, is_training=None):
    """Returns outputs of RetinaNet head."""
    class_outputs = {}
    box_outputs = {}
557
558
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope(
        'retinanet_head'):
559
560
561
562
563
564
565
566
567
568
569
570
571
572
      for level in range(self._min_level, self._max_level + 1):
        features = fpn_features[level]

        class_outputs[level] = self.class_net(
            features, level, is_training=is_training)
        box_outputs[level] = self.box_net(
            features, level, is_training=is_training)
    return class_outputs, box_outputs

  def class_net(self, features, level, is_training):
    """Class prediction network for RetinaNet."""
    with self._class_name_scope:
      for i in range(self._num_convs):
        features = self._class_conv[i](features)
573
574
        # The convolution layers in the class net are shared among all levels,
        # but each level has its batch normlization to capture the statistical
575
576
        # difference among different levels.
        name = self._class_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
577
        features = self._class_norm_activation[name](
578
579
580
581
582
583
584
585
586
587
588
589
590
591
            features, is_training=is_training)

      classes = self._class_predict(features)
    return classes

  def box_net(self, features, level, is_training=None):
    """Box regression network for RetinaNet."""
    with self._box_name_scope:
      for i in range(self._num_convs):
        features = self._box_conv[i](features)
        # The convolution layers in the box net are shared among all levels, but
        # each level has its batch normlization to capture the statistical
        # difference among different levels.
        name = self._box_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
592
        features = self._box_norm_activation[name](
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
            features, is_training=is_training)

      boxes = self._box_predict(features)
    return boxes


# TODO(yeqing): Refactor this class when it is ready for var_scope reuse.
class ShapemaskPriorHead(object):
  """ShapeMask Prior head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               use_category_for_mask,
608
               shape_prior_path):
609
610
611
612
613
614
615
616
617
    """Initialize params to build RetinaNet head.

    Args:
      num_classes: Number of output classes.
      num_downsample_channels: number of channels in mask branch.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      shape_prior_path: the path to load shape priors.
    """
618
    self._mask_num_classes = num_classes if use_category_for_mask else 1
619
620
621
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._shape_prior_path = shape_prior_path
622
623
624
625
    self._use_category_for_mask = use_category_for_mask

    self._shape_prior_fc = tf.keras.layers.Dense(
        self._num_downsample_channels, name='shape-prior-fc')
626

627
  def __call__(self, fpn_features, boxes, outer_boxes, classes, is_training):
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    """Generate the detection priors from the box detections and FPN features.

    This corresponds to the Fig. 4 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
      fpn_features: a dictionary of FPN features.
      boxes: a float tensor of shape [batch_size, num_instances, 4]
        representing the tight gt boxes from dataloader/detection.
      outer_boxes: a float tensor of shape [batch_size, num_instances, 4]
        representing the loose gt boxes from dataloader/detection.
      classes: a int Tensor of shape [batch_size, num_instances]
        of instance classes.
      is_training: training mode or not.

    Returns:
644
      instance_features: a float Tensor of shape [batch_size * num_instances,
645
646
647
648
649
          mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
          instance feature crop.
      detection_priors: A float Tensor of shape [batch_size * num_instances,
        mask_size, mask_size, 1].
    """
650
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope('prior_mask'):
651
652
653
654
655
656
657
658
659
660
661
662
      batch_size, num_instances, _ = boxes.get_shape().as_list()
      outer_boxes = tf.cast(outer_boxes, tf.float32)
      boxes = tf.cast(boxes, tf.float32)
      instance_features = spatial_transform_ops.multilevel_crop_and_resize(
          fpn_features, outer_boxes, output_size=self._mask_crop_size)
      instance_features = self._shape_prior_fc(instance_features)

      shape_priors = self._get_priors()

      # Get uniform priors for each outer box.
      uniform_priors = tf.ones([batch_size, num_instances, self._mask_crop_size,
                                self._mask_crop_size])
663
      uniform_priors = spatial_transform_ops.crop_mask_in_target_box(
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
          uniform_priors, boxes, outer_boxes, self._mask_crop_size)

      # Classify shape priors using uniform priors + instance features.
      prior_distribution = self._classify_shape_priors(
          tf.cast(instance_features, tf.float32), uniform_priors, classes)

      instance_priors = tf.gather(shape_priors, classes)
      instance_priors *= tf.expand_dims(tf.expand_dims(
          tf.cast(prior_distribution, tf.float32), axis=-1), axis=-1)
      instance_priors = tf.reduce_sum(instance_priors, axis=2)
      detection_priors = spatial_transform_ops.crop_mask_in_target_box(
          instance_priors, boxes, outer_boxes, self._mask_crop_size)

      return instance_features, detection_priors

  def _get_priors(self):
    """Load shape priors from file."""
    # loads class specific or agnostic shape priors
    if self._shape_prior_path:
      # Priors are loaded into shape [mask_num_classes, num_clusters, 32, 32].
      priors = np.load(tf.io.gfile.GFile(self._shape_prior_path, 'rb'))
      priors = tf.convert_to_tensor(priors, dtype=tf.float32)
      self._num_clusters = priors.get_shape().as_list()[1]
    else:
      # If prior path does not exist, do not use priors, i.e., pirors equal to
      # uniform empty 32x32 patch.
      self._num_clusters = 1
      priors = tf.zeros([self._mask_num_classes, self._num_clusters,
                         self._mask_crop_size, self._mask_crop_size])
    return priors

  def _classify_shape_priors(self, features, uniform_priors, classes):
696
697
698
699
700
701
    """Classify the uniform prior by predicting the shape modes.

    Classify the object crop features into K modes of the clusters for each
    category.

    Args:
702
703
      features: A float Tensor of shape [batch_size, num_instances,
        mask_size, mask_size, num_channels].
704
705
      uniform_priors: A float Tensor of shape [batch_size, num_instances,
        mask_size, mask_size] representing the uniform detection priors.
706
      classes: A int Tensor of shape [batch_size, num_instances]
707
708
709
        of detection class ids.

    Returns:
710
711
      prior_distribution: A float Tensor of shape
        [batch_size, num_instances, num_clusters] representing the classifier
712
713
714
        output probability over all possible shapes.
    """

715
716
717
718
719
720
721
722
723
724
725
    batch_size, num_instances, _, _, _ = features.get_shape().as_list()
    features *= tf.expand_dims(uniform_priors, axis=-1)
    # Reduce spatial dimension of features. The features have shape
    # [batch_size, num_instances, num_channels].
    features = tf.reduce_mean(features, axis=(2, 3))
    logits = tf.keras.layers.Dense(
        self._mask_num_classes * self._num_clusters,
        kernel_initializer=tf.random_normal_initializer(stddev=0.01))(features)
    logits = tf.reshape(logits,
                        [batch_size, num_instances,
                         self._mask_num_classes, self._num_clusters])
726
    if self._use_category_for_mask:
727
728
      logits = tf.gather(logits, tf.expand_dims(classes, axis=-1), batch_dims=2)
      logits = tf.squeeze(logits, axis=2)
729
    else:
730
731
732
733
      logits = logits[:, :, 0, :]

    distribution = tf.nn.softmax(logits, name='shape_prior_weights')
    return distribution
734
735
736
737
738
739
740
741
742
743


class ShapemaskCoarsemaskHead(object):
  """ShapemaskCoarsemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               use_category_for_mask,
744
745
               num_convs,
               norm_activation=nn_ops.norm_activation_builder()):
746
747
748
749
750
751
752
753
754
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
755
756
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
757
    """
758
759
    self._mask_num_classes = num_classes if use_category_for_mask else 1
    self._use_category_for_mask = use_category_for_mask
760
761
762
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._num_convs = num_convs
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    self._norm_activation = norm_activation

    self._coarse_mask_fc = tf.keras.layers.Dense(
        self._num_downsample_channels, name='coarse-mask-fc')

    self._class_conv = []
    self._class_norm_activation = []

    for i in range(self._num_convs):
      self._class_conv.append(tf.keras.layers.Conv2D(
          self._num_downsample_channels,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          padding='same',
          name='coarse-mask-class-%d' % i))

      self._class_norm_activation.append(
          norm_activation(name='coarse-mask-class-%d-bn' % i))

    self._class_predict = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        padding='same',
        name='coarse-mask-class-predict')

  def __call__(self, features, detection_priors, classes, is_training):
793
794
795
796
797
798
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
799
      features: a float Tensor of shape [batch_size, num_instances,
800
801
        mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
        instance feature crop.
802
      detection_priors: a float Tensor of shape [batch_size, num_instances,
803
804
        mask_crop_size, mask_crop_size, 1]. This is the detection prior for
        the instance.
805
      classes: a int Tensor of shape [batch_size, num_instances]
806
807
808
809
810
        of instance classes.
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
811
        [batch_size, num_instances, mask_size, mask_size].
812
    """
813
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope('coarse_mask'):
814
815
816
817
818
819
820
821
822
823
824
825
826
827
      # Transform detection priors to have the same dimension as features.
      detection_priors = tf.expand_dims(detection_priors, axis=-1)
      detection_priors = self._coarse_mask_fc(detection_priors)

      features += detection_priors
      mask_logits = self.decoder_net(features, is_training)
      # Gather the logits with right input class.
      if self._use_category_for_mask:
        mask_logits = tf.transpose(mask_logits, [0, 1, 4, 2, 3])
        mask_logits = tf.gather(mask_logits, tf.expand_dims(classes, -1),
                                batch_dims=2)
        mask_logits = tf.squeeze(mask_logits, axis=2)
      else:
        mask_logits = mask_logits[..., 0]
828

829
      return mask_logits
830

831
  def decoder_net(self, features, is_training=False):
832
833
834
    """Coarse mask decoder network architecture.

    Args:
835
      features: A tensor of size [batch, height_in, width_in, channels_in].
836
      is_training: Whether batch_norm layers are in training mode.
837

838
839
840
841
    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels]
    """
842
843
844
845
    (batch_size, num_instances, height, width,
     num_channels) = features.get_shape().as_list()
    features = tf.reshape(features, [batch_size * num_instances, height, width,
                                     num_channels])
846
    for i in range(self._num_convs):
847
848
849
      features = self._class_conv[i](features)
      features = self._class_norm_activation[i](features,
                                                is_training=is_training)
850

851
852
853
854
    mask_logits = self._class_predict(features)
    mask_logits = tf.reshape(mask_logits, [batch_size, num_instances, height,
                                           width, self._mask_num_classes])
    return mask_logits
855
856
857
858
859
860
861
862
863


class ShapemaskFinemaskHead(object):
  """ShapemaskFinemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
864
               use_category_for_mask,
865
               num_convs,
866
               upsample_factor,
Pengchong Jin's avatar
Pengchong Jin committed
867
               norm_activation=nn_ops.norm_activation_builder()):
868
869
870
871
872
873
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
874
      use_category_for_mask: use class information in mask branch.
875
876
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
877
      upsample_factor: `int` number of fine mask upsampling factor.
Pengchong Jin's avatar
Pengchong Jin committed
878
      norm_activation: an operation that includes a batch normalization layer
879
880
        followed by a relu layer(optional).
    """
881
882
    self._use_category_for_mask = use_category_for_mask
    self._mask_num_classes = num_classes if use_category_for_mask else 1
883
884
885
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._num_convs = num_convs
886
887
888
889
    self.up_sample_factor = upsample_factor

    self._fine_mask_fc = tf.keras.layers.Dense(
        self._num_downsample_channels, name='fine-mask-fc')
890
891

    self._upsample_conv = tf.keras.layers.Conv2DTranspose(
892
893
894
895
896
        self._num_downsample_channels,
        (self.up_sample_factor, self.up_sample_factor),
        (self.up_sample_factor, self.up_sample_factor),
        name='fine-mask-conv2d-tran')

897
898
899
900
901
902
903
904
905
906
907
908
    self._fine_class_conv = []
    self._fine_class_bn = []
    for i in range(self._num_convs):
      self._fine_class_conv.append(
          tf.keras.layers.Conv2D(
              self._num_downsample_channels,
              kernel_size=(3, 3),
              bias_initializer=tf.zeros_initializer(),
              kernel_initializer=tf.keras.initializers.RandomNormal(
                  stddev=0.01),
              activation=None,
              padding='same',
909
910
911
912
913
914
915
916
917
918
919
920
              name='fine-mask-class-%d' % i))
      self._fine_class_bn.append(norm_activation(
          name='fine-mask-class-%d-bn' % i))

    self._class_predict_conv = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        padding='same',
        name='fine-mask-class-predict')
921

922
  def __call__(self, features, mask_logits, classes, is_training):
923
924
925
926
927
928
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
929
930
931
932
933
934
935
936
      features: a float Tensor of shape
        [batch_size, num_instances, mask_crop_size, mask_crop_size,
        num_downsample_channels]. This is the instance feature crop.
      mask_logits: a float Tensor of shape
        [batch_size, num_instances, mask_crop_size, mask_crop_size] indicating
        predicted mask logits.
      classes: a int Tensor of shape [batch_size, num_instances]
        of instance classes.
937
938
939
940
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
941
        [batch_size, num_instances, mask_size, mask_size].
942
    """
943
944
    # Extract the foreground mean features
    # with tf.variable_scope('fine_mask', reuse=tf.AUTO_REUSE):
945
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope('fine_mask'):
946
947
948
      mask_probs = tf.nn.sigmoid(mask_logits)
      # Compute instance embedding for hard average.
      binary_mask = tf.cast(tf.greater(mask_probs, 0.5), features.dtype)
949
      instance_embedding = tf.reduce_sum(
950
951
952
          features * tf.expand_dims(binary_mask, axis=-1), axis=(2, 3))
      instance_embedding /= tf.expand_dims(
          tf.reduce_sum(binary_mask, axis=(2, 3)) + 1e-20, axis=-1)
953
      # Take the difference between crop features and mean instance features.
954
955
      features -= tf.expand_dims(
          tf.expand_dims(instance_embedding, axis=2), axis=2)
956

957
      features += self._fine_mask_fc(tf.expand_dims(mask_probs, axis=-1))
958

959
960
961
962
963
964
965
966
967
      # Decoder to generate upsampled segmentation mask.
      mask_logits = self.decoder_net(features, is_training)
      if self._use_category_for_mask:
        mask_logits = tf.transpose(mask_logits, [0, 1, 4, 2, 3])
        mask_logits = tf.gather(mask_logits,
                                tf.expand_dims(classes, -1), batch_dims=2)
        mask_logits = tf.squeeze(mask_logits, axis=2)
      else:
        mask_logits = mask_logits[..., 0]
968

969
    return mask_logits
970

971
  def decoder_net(self, features, is_training=False):
972
973
974
    """Fine mask decoder network architecture.

    Args:
975
      features: A tensor of size [batch, height_in, width_in, channels_in].
976
977
978
979
980
981
982
      is_training: Whether batch_norm layers are in training mode.

    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels], where output size is self._gt_upsample_scale times
        that of input.
    """
983
984
985
986
    (batch_size, num_instances, height, width,
     num_channels) = features.get_shape().as_list()
    features = tf.reshape(features, [batch_size * num_instances, height, width,
                                     num_channels])
987
    for i in range(self._num_convs):
988
989
990
991
992
      features = self._fine_class_conv[i](features)
      features = self._fine_class_bn[i](features, is_training=is_training)

    if self.up_sample_factor > 1:
      features = self._upsample_conv(features)
993

994
995
    # Predict per-class instance masks.
    mask_logits = self._class_predict_conv(features)
996

997
998
999
1000
1001
1002
    mask_logits = tf.reshape(mask_logits,
                             [batch_size, num_instances,
                              height * self.up_sample_factor,
                              width * self.up_sample_factor,
                              self._mask_num_classes])
    return mask_logits