heads.py 39.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes to build various prediction heads in all supported models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Yeqing Li's avatar
Yeqing Li committed
21
import functools
22
23

import numpy as np
24
import tensorflow as tf
25
26
from tensorflow.python.keras import backend
from official.vision.detection.modeling.architecture import nn_ops
27
from official.vision.detection.ops import spatial_transform_ops
28
29


Yeqing Li's avatar
Yeqing Li committed
30
class RpnHead(tf.keras.layers.Layer):
31
32
33
34
35
36
  """Region Proposal Network head."""

  def __init__(self,
               min_level,
               max_level,
               anchors_per_location,
Yeqing Li's avatar
Yeqing Li committed
37
38
39
               num_convs=2,
               num_filters=256,
               use_separable_conv=False,
Pengchong Jin's avatar
Pengchong Jin committed
40
               activation='relu',
Yeqing Li's avatar
Yeqing Li committed
41
               use_batch_norm=True,
Pengchong Jin's avatar
Pengchong Jin committed
42
43
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
44
45
46
47
48
49
50
    """Initialize params to build Region Proposal Network head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      anchors_per_location: `int` number of number of anchors per pixel
        location.
Yeqing Li's avatar
Yeqing Li committed
51
52
53
54
55
56
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
57
      activation: activation function. Support 'relu' and 'swish'.
Yeqing Li's avatar
Yeqing Li committed
58
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Pengchong Jin's avatar
Pengchong Jin committed
59
60
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
61
62
63
64
    """
    self._min_level = min_level
    self._max_level = max_level
    self._anchors_per_location = anchors_per_location
Pengchong Jin's avatar
Pengchong Jin committed
65
66
67
68
69
70
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
71
72
73
74
75
76
77
78
79
80
81
82
83
    self._use_batch_norm = use_batch_norm

    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          bias_initializer=tf.zeros_initializer())

Yeqing Li's avatar
Yeqing Li committed
84
    self._rpn_conv = self._conv2d_op(
Yeqing Li's avatar
Yeqing Li committed
85
        num_filters,
86
87
        kernel_size=(3, 3),
        strides=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
88
        activation=(None if self._use_batch_norm else self._activation_op),
89
90
        padding='same',
        name='rpn')
Yeqing Li's avatar
Yeqing Li committed
91
    self._rpn_class_conv = self._conv2d_op(
92
93
94
95
96
        anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-class')
Yeqing Li's avatar
Yeqing Li committed
97
    self._rpn_box_conv = self._conv2d_op(
98
99
100
101
102
        4 * anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-box')
Yeqing Li's avatar
Yeqing Li committed
103

Pengchong Jin's avatar
Pengchong Jin committed
104
    self._norm_activations = {}
Yeqing Li's avatar
Yeqing Li committed
105
106
    if self._use_batch_norm:
      for level in range(self._min_level, self._max_level + 1):
Pengchong Jin's avatar
Pengchong Jin committed
107
        self._norm_activations[level] = norm_activation(name='rpn-l%d-bn' %
Yeqing Li's avatar
Yeqing Li committed
108
                                                        level)
109
110
111
112
113

  def _shared_rpn_heads(self, features, anchors_per_location, level,
                        is_training):
    """Shared RPN heads."""
    features = self._rpn_conv(features)
Yeqing Li's avatar
Yeqing Li committed
114
115
    if self._use_batch_norm:
      # The batch normalization layers are not shared between levels.
Pengchong Jin's avatar
Pengchong Jin committed
116
      features = self._norm_activations[level](
Yeqing Li's avatar
Yeqing Li committed
117
          features, is_training=is_training)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    # Proposal classification scores
    scores = self._rpn_class_conv(features)
    # Proposal bbox regression deltas
    bboxes = self._rpn_box_conv(features)

    return scores, bboxes

  def __call__(self, features, is_training=None):

    scores_outputs = {}
    box_outputs = {}

    with backend.get_graph().as_default(), tf.name_scope('rpn_head'):
      for level in range(self._min_level, self._max_level + 1):
        scores_output, box_output = self._shared_rpn_heads(
            features[level], self._anchors_per_location, level, is_training)
        scores_outputs[level] = scores_output
        box_outputs[level] = box_output
      return scores_outputs, box_outputs


Yeqing Li's avatar
Yeqing Li committed
139
class FastrcnnHead(tf.keras.layers.Layer):
140
141
142
143
  """Fast R-CNN box head."""

  def __init__(self,
               num_classes,
Yeqing Li's avatar
Yeqing Li committed
144
145
146
147
148
               num_convs=0,
               num_filters=256,
               use_separable_conv=False,
               num_fcs=2,
               fc_dims=1024,
Pengchong Jin's avatar
Pengchong Jin committed
149
               activation='relu',
Yeqing Li's avatar
Yeqing Li committed
150
               use_batch_norm=True,
Pengchong Jin's avatar
Pengchong Jin committed
151
152
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
153
154
155
156
    """Initialize params to build Fast R-CNN box head.

    Args:
      num_classes: a integer for the number of classes.
Yeqing Li's avatar
Yeqing Li committed
157
158
159
160
161
162
163
164
165
166
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the FC layers.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      num_fcs: `int` number that represents the number of FC layers before the
        predictions.
      fc_dims: `int` number that represents the number of dimension of the FC
        layers.
167
      activation: activation function. Support 'relu' and 'swish'.
Yeqing Li's avatar
Yeqing Li committed
168
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Pengchong Jin's avatar
Pengchong Jin committed
169
170
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
171
172
    """
    self._num_classes = num_classes
Yeqing Li's avatar
Yeqing Li committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())

    self._num_fcs = num_fcs
    self._fc_dims = fc_dims
Pengchong Jin's avatar
Pengchong Jin committed
190
191
192
193
194
195
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
196
    self._use_batch_norm = use_batch_norm
Pengchong Jin's avatar
Pengchong Jin committed
197
    self._norm_activation = norm_activation
198

Yeqing Li's avatar
Yeqing Li committed
199
200
201
202
203
204
205
206
207
208
    self._conv_ops = []
    self._conv_bn_ops = []
    for i in range(self._num_convs):
      self._conv_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
209
              activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
210
211
              name='conv_{}'.format(i)))
      if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
212
        self._conv_bn_ops.append(self._norm_activation())
Yeqing Li's avatar
Yeqing Li committed
213
214
215
216
217
218
219

    self._fc_ops = []
    self._fc_bn_ops = []
    for i in range(self._num_fcs):
      self._fc_ops.append(
          tf.keras.layers.Dense(
              units=self._fc_dims,
Pengchong Jin's avatar
Pengchong Jin committed
220
              activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
221
222
              name='fc{}'.format(i)))
      if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
223
        self._fc_bn_ops.append(self._norm_activation(fused=False))
Yeqing Li's avatar
Yeqing Li committed
224
225
226
227
228
229
230
231
232
233
234
235

    self._class_predict = tf.keras.layers.Dense(
        self._num_classes,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        bias_initializer=tf.zeros_initializer(),
        name='class-predict')
    self._box_predict = tf.keras.layers.Dense(
        self._num_classes * 4,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.001),
        bias_initializer=tf.zeros_initializer(),
        name='box-predict')

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  def __call__(self, roi_features, is_training=None):
    """Box and class branches for the Mask-RCNN model.

    Args:
      roi_features: A ROI feature tensor of shape
        [batch_size, num_rois, height_l, width_l, num_filters].
      is_training: `boolean`, if True if model is in training mode.

    Returns:
      class_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes], representing the class predictions.
      box_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes * 4], representing the box
        predictions.
    """

    with backend.get_graph().as_default(), tf.name_scope('fast_rcnn_head'):
      # reshape inputs beofre FC.
      _, num_rois, height, width, filters = roi_features.get_shape().as_list()
Yeqing Li's avatar
Yeqing Li committed
255
256
257

      net = tf.reshape(roi_features, [-1, height, width, filters])
      for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
258
        net = self._conv_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
259
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
260
          net = self._conv_bn_ops[i](net, is_training=is_training)
Yeqing Li's avatar
Yeqing Li committed
261
262
263
264
265

      filters = self._num_filters if self._num_convs > 0 else filters
      net = tf.reshape(net, [-1, num_rois, height * width * filters])

      for i in range(self._num_fcs):
Yeqing Li's avatar
Yeqing Li committed
266
        net = self._fc_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
267
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
268
          net = self._fc_bn_ops[i](net, is_training=is_training)
269

Yeqing Li's avatar
Yeqing Li committed
270
271
      class_outputs = self._class_predict(net)
      box_outputs = self._box_predict(net)
272
273
274
      return class_outputs, box_outputs


Yeqing Li's avatar
Yeqing Li committed
275
class MaskrcnnHead(tf.keras.layers.Layer):
276
277
278
279
  """Mask R-CNN head."""

  def __init__(self,
               num_classes,
Pengchong Jin's avatar
Pengchong Jin committed
280
               mask_target_size,
Yeqing Li's avatar
Yeqing Li committed
281
282
283
               num_convs=4,
               num_filters=256,
               use_separable_conv=False,
Pengchong Jin's avatar
Pengchong Jin committed
284
               activation='relu',
Yeqing Li's avatar
Yeqing Li committed
285
               use_batch_norm=True,
Pengchong Jin's avatar
Pengchong Jin committed
286
287
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
288
289
290
291
    """Initialize params to build Fast R-CNN head.

    Args:
      num_classes: a integer for the number of classes.
Pengchong Jin's avatar
Pengchong Jin committed
292
      mask_target_size: a integer that is the resolution of masks.
Yeqing Li's avatar
Yeqing Li committed
293
294
295
296
297
298
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
299
      activation: activation function. Support 'relu' and 'swish'.
Yeqing Li's avatar
Yeqing Li committed
300
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Pengchong Jin's avatar
Pengchong Jin committed
301
302
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
303
304
    """
    self._num_classes = num_classes
Pengchong Jin's avatar
Pengchong Jin committed
305
    self._mask_target_size = mask_target_size
Yeqing Li's avatar
Yeqing Li committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())
Pengchong Jin's avatar
Pengchong Jin committed
320
321
322
323
324
325
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
326
    self._use_batch_norm = use_batch_norm
Pengchong Jin's avatar
Pengchong Jin committed
327
    self._norm_activation = norm_activation
Yeqing Li's avatar
Yeqing Li committed
328
329
330
331
332
333
334
335
336
    self._conv2d_ops = []
    for i in range(self._num_convs):
      self._conv2d_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
337
              activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
338
339
340
341
342
343
              name='mask-conv-l%d' % i))
    self._mask_conv_transpose = tf.keras.layers.Conv2DTranspose(
        self._num_filters,
        kernel_size=(2, 2),
        strides=(2, 2),
        padding='valid',
Pengchong Jin's avatar
Pengchong Jin committed
344
        activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
345
346
347
348
        kernel_initializer=tf.keras.initializers.VarianceScaling(
            scale=2, mode='fan_out', distribution='untruncated_normal'),
        bias_initializer=tf.zeros_initializer(),
        name='conv5-mask')
349
350
351
352
353
354
355
356
357
358

  def __call__(self, roi_features, class_indices, is_training=None):
    """Mask branch for the Mask-RCNN model.

    Args:
      roi_features: A ROI feature tensor of shape
        [batch_size, num_rois, height_l, width_l, num_filters].
      class_indices: a Tensor of shape [batch_size, num_rois], indicating
        which class the ROI is.
      is_training: `boolean`, if True if model is in training mode.
Yeqing Li's avatar
Yeqing Li committed
359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    Returns:
      mask_outputs: a tensor with a shape of
        [batch_size, num_masks, mask_height, mask_width, num_classes],
        representing the mask predictions.
      fg_gather_indices: a tensor with a shape of [batch_size, num_masks, 2],
        representing the fg mask targets.
    Raises:
      ValueError: If boxes is not a rank-3 tensor or the last dimension of
        boxes is not 4.
    """

    with backend.get_graph().as_default():
      with tf.name_scope('mask_head'):
        _, num_rois, height, width, filters = roi_features.get_shape().as_list()
        net = tf.reshape(roi_features, [-1, height, width, filters])

Yeqing Li's avatar
Yeqing Li committed
376
        for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
377
          net = self._conv2d_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
378
          if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
379
            net = self._norm_activation()(net, is_training=is_training)
380

Yeqing Li's avatar
Yeqing Li committed
381
        net = self._mask_conv_transpose(net)
Yeqing Li's avatar
Yeqing Li committed
382
        if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
383
          net = self._norm_activation()(net, is_training=is_training)
Yeqing Li's avatar
Yeqing Li committed
384
385
386
387

        mask_outputs = self._conv2d_op(
            self._num_classes,
            kernel_size=(1, 1),
388
389
390
391
392
            strides=(1, 1),
            padding='valid',
            name='mask_fcn_logits')(
                net)
        mask_outputs = tf.reshape(mask_outputs, [
Pengchong Jin's avatar
Pengchong Jin committed
393
            -1, num_rois, self._mask_target_size, self._mask_target_size,
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
            self._num_classes
        ])

        with tf.name_scope('masks_post_processing'):
          # TODO(pengchong): Figure out the way not to use the static inferred
          # batch size.
          batch_size, num_masks = class_indices.get_shape().as_list()
          mask_outputs = tf.transpose(a=mask_outputs, perm=[0, 1, 4, 2, 3])
          # Contructs indices for gather.
          batch_indices = tf.tile(
              tf.expand_dims(tf.range(batch_size), axis=1), [1, num_masks])
          mask_indices = tf.tile(
              tf.expand_dims(tf.range(num_masks), axis=0), [batch_size, 1])
          gather_indices = tf.stack(
              [batch_indices, mask_indices, class_indices], axis=2)
          mask_outputs = tf.gather_nd(mask_outputs, gather_indices)
      return mask_outputs


class RetinanetHead(object):
  """RetinaNet head."""

  def __init__(self,
               min_level,
               max_level,
               num_classes,
               anchors_per_location,
               num_convs=4,
               num_filters=256,
423
               use_separable_conv=False,
Pengchong Jin's avatar
Pengchong Jin committed
424
425
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
426
427
428
429
430
431
432
433
434
435
    """Initialize params to build RetinaNet head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      num_classes: `int` number of classification categories.
      anchors_per_location: `int` number of anchors per pixel location.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
      num_filters: `int` number of filters used in the head architecture.
436
437
      use_separable_conv: `bool` to indicate whether to use separable
        convoluation.
Pengchong Jin's avatar
Pengchong Jin committed
438
439
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
440
441
442
443
444
445
446
447
448
    """
    self._min_level = min_level
    self._max_level = max_level

    self._num_classes = num_classes
    self._anchors_per_location = anchors_per_location

    self._num_convs = num_convs
    self._num_filters = num_filters
449
    self._use_separable_conv = use_separable_conv
450
451
452
453
    with tf.name_scope('class_net') as scope_name:
      self._class_name_scope = tf.name_scope(scope_name)
    with tf.name_scope('box_net') as scope_name:
      self._box_name_scope = tf.name_scope(scope_name)
Pengchong Jin's avatar
Pengchong Jin committed
454
455
    self._build_class_net_layers(norm_activation)
    self._build_box_net_layers(norm_activation)
456
457
458
459
460
461
462

  def _class_net_batch_norm_name(self, i, level):
    return 'class-%d-%d' % (i, level)

  def _box_net_batch_norm_name(self, i, level):
    return 'box-%d-%d' % (i, level)

Pengchong Jin's avatar
Pengchong Jin committed
463
  def _build_class_net_layers(self, norm_activation):
464
    """Build re-usable layers for class prediction network."""
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    if self._use_separable_conv:
      self._class_predict = tf.keras.layers.SeparableConv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          padding='same',
          name='class-predict')
    else:
      self._class_predict = tf.keras.layers.Conv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='class-predict')
480
    self._class_conv = []
Pengchong Jin's avatar
Pengchong Jin committed
481
    self._class_norm_activation = {}
482
    for i in range(self._num_convs):
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
      if self._use_separable_conv:
        self._class_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                activation=None,
                padding='same',
                name='class-' + str(i)))
      else:
        self._class_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                activation=None,
                padding='same',
                name='class-' + str(i)))
503
504
      for level in range(self._min_level, self._max_level + 1):
        name = self._class_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
505
        self._class_norm_activation[name] = norm_activation(name=name)
506

Pengchong Jin's avatar
Pengchong Jin committed
507
  def _build_box_net_layers(self, norm_activation):
508
    """Build re-usable layers for box prediction network."""
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    if self._use_separable_conv:
      self._box_predict = tf.keras.layers.SeparableConv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          padding='same',
          name='box-predict')
    else:
      self._box_predict = tf.keras.layers.Conv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='box-predict')
524
    self._box_conv = []
Pengchong Jin's avatar
Pengchong Jin committed
525
    self._box_norm_activation = {}
526
    for i in range(self._num_convs):
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
      if self._use_separable_conv:
        self._box_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                padding='same',
                name='box-' + str(i)))
      else:
        self._box_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                padding='same',
                name='box-' + str(i)))
547
548
      for level in range(self._min_level, self._max_level + 1):
        name = self._box_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
549
        self._box_norm_activation[name] = norm_activation(name=name)
550
551
552
553
554

  def __call__(self, fpn_features, is_training=None):
    """Returns outputs of RetinaNet head."""
    class_outputs = {}
    box_outputs = {}
Pengchong Jin's avatar
Pengchong Jin committed
555
    with backend.get_graph().as_default(), tf.name_scope('retinanet_head'):
556
557
558
559
560
561
562
563
564
565
566
567
568
569
      for level in range(self._min_level, self._max_level + 1):
        features = fpn_features[level]

        class_outputs[level] = self.class_net(
            features, level, is_training=is_training)
        box_outputs[level] = self.box_net(
            features, level, is_training=is_training)
    return class_outputs, box_outputs

  def class_net(self, features, level, is_training):
    """Class prediction network for RetinaNet."""
    with self._class_name_scope:
      for i in range(self._num_convs):
        features = self._class_conv[i](features)
570
571
        # The convolution layers in the class net are shared among all levels,
        # but each level has its batch normlization to capture the statistical
572
573
        # difference among different levels.
        name = self._class_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
574
        features = self._class_norm_activation[name](
575
576
577
578
579
580
581
582
583
584
585
586
587
588
            features, is_training=is_training)

      classes = self._class_predict(features)
    return classes

  def box_net(self, features, level, is_training=None):
    """Box regression network for RetinaNet."""
    with self._box_name_scope:
      for i in range(self._num_convs):
        features = self._box_conv[i](features)
        # The convolution layers in the box net are shared among all levels, but
        # each level has its batch normlization to capture the statistical
        # difference among different levels.
        name = self._box_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
589
        features = self._box_norm_activation[name](
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
            features, is_training=is_training)

      boxes = self._box_predict(features)
    return boxes


# TODO(yeqing): Refactor this class when it is ready for var_scope reuse.
class ShapemaskPriorHead(object):
  """ShapeMask Prior head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               use_category_for_mask,
605
               shape_prior_path):
606
607
608
609
610
611
612
613
614
    """Initialize params to build RetinaNet head.

    Args:
      num_classes: Number of output classes.
      num_downsample_channels: number of channels in mask branch.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      shape_prior_path: the path to load shape priors.
    """
615
    self._mask_num_classes = num_classes if use_category_for_mask else 1
616
617
618
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._shape_prior_path = shape_prior_path
619
620
621
622
    self._use_category_for_mask = use_category_for_mask

    self._shape_prior_fc = tf.keras.layers.Dense(
        self._num_downsample_channels, name='shape-prior-fc')
623

624
  def __call__(self, fpn_features, boxes, outer_boxes, classes, is_training):
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    """Generate the detection priors from the box detections and FPN features.

    This corresponds to the Fig. 4 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
      fpn_features: a dictionary of FPN features.
      boxes: a float tensor of shape [batch_size, num_instances, 4]
        representing the tight gt boxes from dataloader/detection.
      outer_boxes: a float tensor of shape [batch_size, num_instances, 4]
        representing the loose gt boxes from dataloader/detection.
      classes: a int Tensor of shape [batch_size, num_instances]
        of instance classes.
      is_training: training mode or not.

    Returns:
641
      instance_features: a float Tensor of shape [batch_size * num_instances,
642
643
644
645
646
          mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
          instance feature crop.
      detection_priors: A float Tensor of shape [batch_size * num_instances,
        mask_size, mask_size, 1].
    """
647
648
649
650
651
652
653
654
655
656
657
658
659
    with backend.get_graph().as_default(), tf.name_scope('prior_mask'):
      batch_size, num_instances, _ = boxes.get_shape().as_list()
      outer_boxes = tf.cast(outer_boxes, tf.float32)
      boxes = tf.cast(boxes, tf.float32)
      instance_features = spatial_transform_ops.multilevel_crop_and_resize(
          fpn_features, outer_boxes, output_size=self._mask_crop_size)
      instance_features = self._shape_prior_fc(instance_features)

      shape_priors = self._get_priors()

      # Get uniform priors for each outer box.
      uniform_priors = tf.ones([batch_size, num_instances, self._mask_crop_size,
                                self._mask_crop_size])
660
      uniform_priors = spatial_transform_ops.crop_mask_in_target_box(
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
          uniform_priors, boxes, outer_boxes, self._mask_crop_size)

      # Classify shape priors using uniform priors + instance features.
      prior_distribution = self._classify_shape_priors(
          tf.cast(instance_features, tf.float32), uniform_priors, classes)

      instance_priors = tf.gather(shape_priors, classes)
      instance_priors *= tf.expand_dims(tf.expand_dims(
          tf.cast(prior_distribution, tf.float32), axis=-1), axis=-1)
      instance_priors = tf.reduce_sum(instance_priors, axis=2)
      detection_priors = spatial_transform_ops.crop_mask_in_target_box(
          instance_priors, boxes, outer_boxes, self._mask_crop_size)

      return instance_features, detection_priors

  def _get_priors(self):
    """Load shape priors from file."""
    # loads class specific or agnostic shape priors
    if self._shape_prior_path:
      # Priors are loaded into shape [mask_num_classes, num_clusters, 32, 32].
      priors = np.load(tf.io.gfile.GFile(self._shape_prior_path, 'rb'))
      priors = tf.convert_to_tensor(priors, dtype=tf.float32)
      self._num_clusters = priors.get_shape().as_list()[1]
    else:
      # If prior path does not exist, do not use priors, i.e., pirors equal to
      # uniform empty 32x32 patch.
      self._num_clusters = 1
      priors = tf.zeros([self._mask_num_classes, self._num_clusters,
                         self._mask_crop_size, self._mask_crop_size])
    return priors

  def _classify_shape_priors(self, features, uniform_priors, classes):
693
694
695
696
697
698
    """Classify the uniform prior by predicting the shape modes.

    Classify the object crop features into K modes of the clusters for each
    category.

    Args:
699
700
      features: A float Tensor of shape [batch_size, num_instances,
        mask_size, mask_size, num_channels].
701
702
      uniform_priors: A float Tensor of shape [batch_size, num_instances,
        mask_size, mask_size] representing the uniform detection priors.
703
      classes: A int Tensor of shape [batch_size, num_instances]
704
705
706
        of detection class ids.

    Returns:
707
708
      prior_distribution: A float Tensor of shape
        [batch_size, num_instances, num_clusters] representing the classifier
709
710
711
        output probability over all possible shapes.
    """

712
713
714
715
716
717
718
719
720
721
722
    batch_size, num_instances, _, _, _ = features.get_shape().as_list()
    features *= tf.expand_dims(uniform_priors, axis=-1)
    # Reduce spatial dimension of features. The features have shape
    # [batch_size, num_instances, num_channels].
    features = tf.reduce_mean(features, axis=(2, 3))
    logits = tf.keras.layers.Dense(
        self._mask_num_classes * self._num_clusters,
        kernel_initializer=tf.random_normal_initializer(stddev=0.01))(features)
    logits = tf.reshape(logits,
                        [batch_size, num_instances,
                         self._mask_num_classes, self._num_clusters])
723
    if self._use_category_for_mask:
724
725
      logits = tf.gather(logits, tf.expand_dims(classes, axis=-1), batch_dims=2)
      logits = tf.squeeze(logits, axis=2)
726
    else:
727
728
729
730
      logits = logits[:, :, 0, :]

    distribution = tf.nn.softmax(logits, name='shape_prior_weights')
    return distribution
731
732
733
734
735
736
737
738
739
740


class ShapemaskCoarsemaskHead(object):
  """ShapemaskCoarsemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               use_category_for_mask,
741
742
               num_convs,
               norm_activation=nn_ops.norm_activation_builder()):
743
744
745
746
747
748
749
750
751
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
752
753
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
754
    """
755
756
    self._mask_num_classes = num_classes if use_category_for_mask else 1
    self._use_category_for_mask = use_category_for_mask
757
758
759
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._num_convs = num_convs
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    self._norm_activation = norm_activation

    self._coarse_mask_fc = tf.keras.layers.Dense(
        self._num_downsample_channels, name='coarse-mask-fc')

    self._class_conv = []
    self._class_norm_activation = []

    for i in range(self._num_convs):
      self._class_conv.append(tf.keras.layers.Conv2D(
          self._num_downsample_channels,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          padding='same',
          name='coarse-mask-class-%d' % i))

      self._class_norm_activation.append(
          norm_activation(name='coarse-mask-class-%d-bn' % i))

    self._class_predict = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        padding='same',
        name='coarse-mask-class-predict')

  def __call__(self, features, detection_priors, classes, is_training):
790
791
792
793
794
795
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
796
      features: a float Tensor of shape [batch_size, num_instances,
797
798
        mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
        instance feature crop.
799
      detection_priors: a float Tensor of shape [batch_size, num_instances,
800
801
        mask_crop_size, mask_crop_size, 1]. This is the detection prior for
        the instance.
802
      classes: a int Tensor of shape [batch_size, num_instances]
803
804
805
806
807
        of instance classes.
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
808
        [batch_size, num_instances, mask_size, mask_size].
809
    """
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
    with backend.get_graph().as_default(), tf.name_scope('coarse_mask'):
      # Transform detection priors to have the same dimension as features.
      detection_priors = tf.expand_dims(detection_priors, axis=-1)
      detection_priors = self._coarse_mask_fc(detection_priors)

      features += detection_priors
      mask_logits = self.decoder_net(features, is_training)
      # Gather the logits with right input class.
      if self._use_category_for_mask:
        mask_logits = tf.transpose(mask_logits, [0, 1, 4, 2, 3])
        mask_logits = tf.gather(mask_logits, tf.expand_dims(classes, -1),
                                batch_dims=2)
        mask_logits = tf.squeeze(mask_logits, axis=2)
      else:
        mask_logits = mask_logits[..., 0]
825

826
      return mask_logits
827

828
  def decoder_net(self, features, is_training=False):
829
830
831
    """Coarse mask decoder network architecture.

    Args:
832
      features: A tensor of size [batch, height_in, width_in, channels_in].
833
      is_training: Whether batch_norm layers are in training mode.
834

835
836
837
838
    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels]
    """
839
840
841
842
    (batch_size, num_instances, height, width,
     num_channels) = features.get_shape().as_list()
    features = tf.reshape(features, [batch_size * num_instances, height, width,
                                     num_channels])
843
    for i in range(self._num_convs):
844
845
846
      features = self._class_conv[i](features)
      features = self._class_norm_activation[i](features,
                                                is_training=is_training)
847

848
849
850
851
    mask_logits = self._class_predict(features)
    mask_logits = tf.reshape(mask_logits, [batch_size, num_instances, height,
                                           width, self._mask_num_classes])
    return mask_logits
852
853
854
855
856
857
858
859
860


class ShapemaskFinemaskHead(object):
  """ShapemaskFinemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
861
               use_category_for_mask,
862
               num_convs,
863
               upsample_factor,
Pengchong Jin's avatar
Pengchong Jin committed
864
               norm_activation=nn_ops.norm_activation_builder()):
865
866
867
868
869
870
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
871
      use_category_for_mask: use class information in mask branch.
872
873
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
874
      upsample_factor: `int` number of fine mask upsampling factor.
Pengchong Jin's avatar
Pengchong Jin committed
875
      norm_activation: an operation that includes a batch normalization layer
876
877
        followed by a relu layer(optional).
    """
878
879
    self._use_category_for_mask = use_category_for_mask
    self._mask_num_classes = num_classes if use_category_for_mask else 1
880
881
882
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._num_convs = num_convs
883
884
885
886
    self.up_sample_factor = upsample_factor

    self._fine_mask_fc = tf.keras.layers.Dense(
        self._num_downsample_channels, name='fine-mask-fc')
887
888

    self._upsample_conv = tf.keras.layers.Conv2DTranspose(
889
890
891
892
893
        self._num_downsample_channels,
        (self.up_sample_factor, self.up_sample_factor),
        (self.up_sample_factor, self.up_sample_factor),
        name='fine-mask-conv2d-tran')

894
895
896
897
898
899
900
901
902
903
904
905
    self._fine_class_conv = []
    self._fine_class_bn = []
    for i in range(self._num_convs):
      self._fine_class_conv.append(
          tf.keras.layers.Conv2D(
              self._num_downsample_channels,
              kernel_size=(3, 3),
              bias_initializer=tf.zeros_initializer(),
              kernel_initializer=tf.keras.initializers.RandomNormal(
                  stddev=0.01),
              activation=None,
              padding='same',
906
907
908
909
910
911
912
913
914
915
916
917
              name='fine-mask-class-%d' % i))
      self._fine_class_bn.append(norm_activation(
          name='fine-mask-class-%d-bn' % i))

    self._class_predict_conv = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        padding='same',
        name='fine-mask-class-predict')
918

919
  def __call__(self, features, mask_logits, classes, is_training):
920
921
922
923
924
925
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
926
927
928
929
930
931
932
933
      features: a float Tensor of shape
        [batch_size, num_instances, mask_crop_size, mask_crop_size,
        num_downsample_channels]. This is the instance feature crop.
      mask_logits: a float Tensor of shape
        [batch_size, num_instances, mask_crop_size, mask_crop_size] indicating
        predicted mask logits.
      classes: a int Tensor of shape [batch_size, num_instances]
        of instance classes.
934
935
936
937
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
938
        [batch_size, num_instances, mask_size, mask_size].
939
    """
940
941
942
943
944
945
    # Extract the foreground mean features
    # with tf.variable_scope('fine_mask', reuse=tf.AUTO_REUSE):
    with backend.get_graph().as_default(), tf.name_scope('fine_mask'):
      mask_probs = tf.nn.sigmoid(mask_logits)
      # Compute instance embedding for hard average.
      binary_mask = tf.cast(tf.greater(mask_probs, 0.5), features.dtype)
946
      instance_embedding = tf.reduce_sum(
947
948
949
          features * tf.expand_dims(binary_mask, axis=-1), axis=(2, 3))
      instance_embedding /= tf.expand_dims(
          tf.reduce_sum(binary_mask, axis=(2, 3)) + 1e-20, axis=-1)
950
      # Take the difference between crop features and mean instance features.
951
952
      features -= tf.expand_dims(
          tf.expand_dims(instance_embedding, axis=2), axis=2)
953

954
      features += self._fine_mask_fc(tf.expand_dims(mask_probs, axis=-1))
955

956
957
958
959
960
961
962
963
964
      # Decoder to generate upsampled segmentation mask.
      mask_logits = self.decoder_net(features, is_training)
      if self._use_category_for_mask:
        mask_logits = tf.transpose(mask_logits, [0, 1, 4, 2, 3])
        mask_logits = tf.gather(mask_logits,
                                tf.expand_dims(classes, -1), batch_dims=2)
        mask_logits = tf.squeeze(mask_logits, axis=2)
      else:
        mask_logits = mask_logits[..., 0]
965

966
    return mask_logits
967

968
  def decoder_net(self, features, is_training=False):
969
970
971
    """Fine mask decoder network architecture.

    Args:
972
      features: A tensor of size [batch, height_in, width_in, channels_in].
973
974
975
976
977
978
979
      is_training: Whether batch_norm layers are in training mode.

    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels], where output size is self._gt_upsample_scale times
        that of input.
    """
980
981
982
983
    (batch_size, num_instances, height, width,
     num_channels) = features.get_shape().as_list()
    features = tf.reshape(features, [batch_size * num_instances, height, width,
                                     num_channels])
984
    for i in range(self._num_convs):
985
986
987
988
989
      features = self._fine_class_conv[i](features)
      features = self._fine_class_bn[i](features, is_training=is_training)

    if self.up_sample_factor > 1:
      features = self._upsample_conv(features)
990

991
992
    # Predict per-class instance masks.
    mask_logits = self._class_predict_conv(features)
993

994
995
996
997
998
999
    mask_logits = tf.reshape(mask_logits,
                             [batch_size, num_instances,
                              height * self.up_sample_factor,
                              width * self.up_sample_factor,
                              self._mask_num_classes])
    return mask_logits