heads.py 43.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes to build various prediction heads in all supported models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Yeqing Li's avatar
Yeqing Li committed
21
import functools
22
23
24
25
26
27
28
import pickle

from absl import logging
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.keras import backend
from official.vision.detection.modeling.architecture import nn_ops
29
from official.vision.detection.ops import spatial_transform_ops
30
31


Yeqing Li's avatar
Yeqing Li committed
32
class RpnHead(tf.keras.layers.Layer):
33
34
35
36
37
38
  """Region Proposal Network head."""

  def __init__(self,
               min_level,
               max_level,
               anchors_per_location,
Yeqing Li's avatar
Yeqing Li committed
39
40
41
42
               num_convs=2,
               num_filters=256,
               use_separable_conv=False,
               use_batch_norm=True,
43
44
45
46
47
48
49
50
               batch_norm_relu=nn_ops.BatchNormRelu):
    """Initialize params to build Region Proposal Network head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      anchors_per_location: `int` number of number of anchors per pixel
        location.
Yeqing Li's avatar
Yeqing Li committed
51
52
53
54
55
56
57
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
58
59
60
61
62
63
      batch_norm_relu: an operation that includes a batch normalization layer
        followed by a relu layer(optional).
    """
    self._min_level = min_level
    self._max_level = max_level
    self._anchors_per_location = anchors_per_location
Yeqing Li's avatar
Yeqing Li committed
64
65
66
67
68
69
70
71
72
73
74
75
76
    self._use_batch_norm = use_batch_norm

    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          bias_initializer=tf.zeros_initializer())

Yeqing Li's avatar
Yeqing Li committed
77
    self._rpn_conv = self._conv2d_op(
Yeqing Li's avatar
Yeqing Li committed
78
        num_filters,
79
80
        kernel_size=(3, 3),
        strides=(1, 1),
Yeqing Li's avatar
Yeqing Li committed
81
        activation=(None if self._use_batch_norm else tf.nn.relu),
82
83
        padding='same',
        name='rpn')
Yeqing Li's avatar
Yeqing Li committed
84
    self._rpn_class_conv = self._conv2d_op(
85
86
87
88
89
        anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-class')
Yeqing Li's avatar
Yeqing Li committed
90
    self._rpn_box_conv = self._conv2d_op(
91
92
93
94
95
        4 * anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-box')
Yeqing Li's avatar
Yeqing Li committed
96

97
    self._batch_norm_relus = {}
Yeqing Li's avatar
Yeqing Li committed
98
99
    if self._use_batch_norm:
      for level in range(self._min_level, self._max_level + 1):
Yeqing Li's avatar
Yeqing Li committed
100
101
        self._batch_norm_relus[level] = batch_norm_relu(name='rpn-l%d-bn' %
                                                        level)
102
103
104
105
106

  def _shared_rpn_heads(self, features, anchors_per_location, level,
                        is_training):
    """Shared RPN heads."""
    features = self._rpn_conv(features)
Yeqing Li's avatar
Yeqing Li committed
107
108
109
110
    if self._use_batch_norm:
      # The batch normalization layers are not shared between levels.
      features = self._batch_norm_relus[level](
          features, is_training=is_training)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    # Proposal classification scores
    scores = self._rpn_class_conv(features)
    # Proposal bbox regression deltas
    bboxes = self._rpn_box_conv(features)

    return scores, bboxes

  def __call__(self, features, is_training=None):

    scores_outputs = {}
    box_outputs = {}

    with backend.get_graph().as_default(), tf.name_scope('rpn_head'):
      for level in range(self._min_level, self._max_level + 1):
        scores_output, box_output = self._shared_rpn_heads(
            features[level], self._anchors_per_location, level, is_training)
        scores_outputs[level] = scores_output
        box_outputs[level] = box_output
      return scores_outputs, box_outputs


Yeqing Li's avatar
Yeqing Li committed
132
class FastrcnnHead(tf.keras.layers.Layer):
133
134
135
136
  """Fast R-CNN box head."""

  def __init__(self,
               num_classes,
Yeqing Li's avatar
Yeqing Li committed
137
138
139
140
141
142
               num_convs=0,
               num_filters=256,
               use_separable_conv=False,
               num_fcs=2,
               fc_dims=1024,
               use_batch_norm=True,
143
144
145
146
147
               batch_norm_relu=nn_ops.BatchNormRelu):
    """Initialize params to build Fast R-CNN box head.

    Args:
      num_classes: a integer for the number of classes.
Yeqing Li's avatar
Yeqing Li committed
148
149
150
151
152
153
154
155
156
157
158
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the FC layers.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      num_fcs: `int` number that represents the number of FC layers before the
        predictions.
      fc_dims: `int` number that represents the number of dimension of the FC
        layers.
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
159
160
161
162
      batch_norm_relu: an operation that includes a batch normalization layer
        followed by a relu layer(optional).
    """
    self._num_classes = num_classes
Yeqing Li's avatar
Yeqing Li committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())

    self._num_fcs = num_fcs
    self._fc_dims = fc_dims

    self._use_batch_norm = use_batch_norm
Yeqing Li's avatar
Yeqing Li committed
182
    self._batch_norm_relu = batch_norm_relu
183

Yeqing Li's avatar
Yeqing Li committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    self._conv_ops = []
    self._conv_bn_ops = []
    for i in range(self._num_convs):
      self._conv_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
              activation=(None if self._use_batch_norm else tf.nn.relu),
              name='conv_{}'.format(i)))
      if self._use_batch_norm:
        self._conv_bn_ops.append(self._batch_norm_relu())

    self._fc_ops = []
    self._fc_bn_ops = []
    for i in range(self._num_fcs):
      self._fc_ops.append(
          tf.keras.layers.Dense(
              units=self._fc_dims,
              activation=(None if self._use_batch_norm else tf.nn.relu),
              name='fc{}'.format(i)))
      if self._use_batch_norm:
        self._fc_bn_ops.append(self._batch_norm_relu(fused=False))

    self._class_predict = tf.keras.layers.Dense(
        self._num_classes,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        bias_initializer=tf.zeros_initializer(),
        name='class-predict')
    self._box_predict = tf.keras.layers.Dense(
        self._num_classes * 4,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.001),
        bias_initializer=tf.zeros_initializer(),
        name='box-predict')

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
  def __call__(self, roi_features, is_training=None):
    """Box and class branches for the Mask-RCNN model.

    Args:
      roi_features: A ROI feature tensor of shape
        [batch_size, num_rois, height_l, width_l, num_filters].
      is_training: `boolean`, if True if model is in training mode.

    Returns:
      class_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes], representing the class predictions.
      box_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes * 4], representing the box
        predictions.
    """

    with backend.get_graph().as_default(), tf.name_scope('fast_rcnn_head'):
      # reshape inputs beofre FC.
      _, num_rois, height, width, filters = roi_features.get_shape().as_list()
Yeqing Li's avatar
Yeqing Li committed
240
241
242

      net = tf.reshape(roi_features, [-1, height, width, filters])
      for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
243
        net = self._conv_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
244
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
245
          net = self._conv_bn_ops[i](net, is_training=is_training)
Yeqing Li's avatar
Yeqing Li committed
246
247
248
249
250

      filters = self._num_filters if self._num_convs > 0 else filters
      net = tf.reshape(net, [-1, num_rois, height * width * filters])

      for i in range(self._num_fcs):
Yeqing Li's avatar
Yeqing Li committed
251
        net = self._fc_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
252
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
253
          net = self._fc_bn_ops[i](net, is_training=is_training)
254

Yeqing Li's avatar
Yeqing Li committed
255
256
      class_outputs = self._class_predict(net)
      box_outputs = self._box_predict(net)
257
258
259
      return class_outputs, box_outputs


Yeqing Li's avatar
Yeqing Li committed
260
class MaskrcnnHead(tf.keras.layers.Layer):
261
262
263
264
  """Mask R-CNN head."""

  def __init__(self,
               num_classes,
Pengchong Jin's avatar
Pengchong Jin committed
265
               mask_target_size,
Yeqing Li's avatar
Yeqing Li committed
266
267
268
269
               num_convs=4,
               num_filters=256,
               use_separable_conv=False,
               use_batch_norm=True,
270
271
272
273
274
               batch_norm_relu=nn_ops.BatchNormRelu):
    """Initialize params to build Fast R-CNN head.

    Args:
      num_classes: a integer for the number of classes.
Pengchong Jin's avatar
Pengchong Jin committed
275
      mask_target_size: a integer that is the resolution of masks.
Yeqing Li's avatar
Yeqing Li committed
276
277
278
279
280
281
282
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
283
284
285
286
      batch_norm_relu: an operation that includes a batch normalization layer
        followed by a relu layer(optional).
    """
    self._num_classes = num_classes
Pengchong Jin's avatar
Pengchong Jin committed
287
    self._mask_target_size = mask_target_size
Yeqing Li's avatar
Yeqing Li committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())

    self._use_batch_norm = use_batch_norm
Yeqing Li's avatar
Yeqing Li committed
304
    self._batch_norm_relu = batch_norm_relu
Yeqing Li's avatar
Yeqing Li committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    self._conv2d_ops = []
    for i in range(self._num_convs):
      self._conv2d_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
              activation=(None if self._use_batch_norm else tf.nn.relu),
              name='mask-conv-l%d' % i))
    self._mask_conv_transpose = tf.keras.layers.Conv2DTranspose(
        self._num_filters,
        kernel_size=(2, 2),
        strides=(2, 2),
        padding='valid',
        activation=(None if self._use_batch_norm else tf.nn.relu),
        kernel_initializer=tf.keras.initializers.VarianceScaling(
            scale=2, mode='fan_out', distribution='untruncated_normal'),
        bias_initializer=tf.zeros_initializer(),
        name='conv5-mask')
326
327
328
329
330
331
332
333
334
335

  def __call__(self, roi_features, class_indices, is_training=None):
    """Mask branch for the Mask-RCNN model.

    Args:
      roi_features: A ROI feature tensor of shape
        [batch_size, num_rois, height_l, width_l, num_filters].
      class_indices: a Tensor of shape [batch_size, num_rois], indicating
        which class the ROI is.
      is_training: `boolean`, if True if model is in training mode.
Yeqing Li's avatar
Yeqing Li committed
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    Returns:
      mask_outputs: a tensor with a shape of
        [batch_size, num_masks, mask_height, mask_width, num_classes],
        representing the mask predictions.
      fg_gather_indices: a tensor with a shape of [batch_size, num_masks, 2],
        representing the fg mask targets.
    Raises:
      ValueError: If boxes is not a rank-3 tensor or the last dimension of
        boxes is not 4.
    """

    with backend.get_graph().as_default():
      with tf.name_scope('mask_head'):
        _, num_rois, height, width, filters = roi_features.get_shape().as_list()
        net = tf.reshape(roi_features, [-1, height, width, filters])

Yeqing Li's avatar
Yeqing Li committed
353
        for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
354
          net = self._conv2d_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
355
356
          if self._use_batch_norm:
            net = self._batch_norm_relu()(net, is_training=is_training)
357

Yeqing Li's avatar
Yeqing Li committed
358
        net = self._mask_conv_transpose(net)
Yeqing Li's avatar
Yeqing Li committed
359
360
361
362
363
364
        if self._use_batch_norm:
          net = self._batch_norm_relu()(net, is_training=is_training)

        mask_outputs = self._conv2d_op(
            self._num_classes,
            kernel_size=(1, 1),
365
366
367
368
369
            strides=(1, 1),
            padding='valid',
            name='mask_fcn_logits')(
                net)
        mask_outputs = tf.reshape(mask_outputs, [
Pengchong Jin's avatar
Pengchong Jin committed
370
            -1, num_rois, self._mask_target_size, self._mask_target_size,
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
            self._num_classes
        ])

        with tf.name_scope('masks_post_processing'):
          # TODO(pengchong): Figure out the way not to use the static inferred
          # batch size.
          batch_size, num_masks = class_indices.get_shape().as_list()
          mask_outputs = tf.transpose(a=mask_outputs, perm=[0, 1, 4, 2, 3])
          # Contructs indices for gather.
          batch_indices = tf.tile(
              tf.expand_dims(tf.range(batch_size), axis=1), [1, num_masks])
          mask_indices = tf.tile(
              tf.expand_dims(tf.range(num_masks), axis=0), [batch_size, 1])
          gather_indices = tf.stack(
              [batch_indices, mask_indices, class_indices], axis=2)
          mask_outputs = tf.gather_nd(mask_outputs, gather_indices)
      return mask_outputs


class RetinanetHead(object):
  """RetinaNet head."""

  def __init__(self,
               min_level,
               max_level,
               num_classes,
               anchors_per_location,
               num_convs=4,
               num_filters=256,
400
               use_separable_conv=False,
401
402
403
404
405
406
407
408
409
410
411
               batch_norm_relu=nn_ops.BatchNormRelu):
    """Initialize params to build RetinaNet head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      num_classes: `int` number of classification categories.
      anchors_per_location: `int` number of anchors per pixel location.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
      num_filters: `int` number of filters used in the head architecture.
412
413
      use_separable_conv: `bool` to indicate whether to use separable
        convoluation.
414
415
416
417
418
419
420
421
422
423
424
      batch_norm_relu: an operation that includes a batch normalization layer
        followed by a relu layer(optional).
    """
    self._min_level = min_level
    self._max_level = max_level

    self._num_classes = num_classes
    self._anchors_per_location = anchors_per_location

    self._num_convs = num_convs
    self._num_filters = num_filters
425
    self._use_separable_conv = use_separable_conv
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

    with tf.name_scope('class_net') as scope_name:
      self._class_name_scope = tf.name_scope(scope_name)
    with tf.name_scope('box_net') as scope_name:
      self._box_name_scope = tf.name_scope(scope_name)
    self._build_class_net_layers(batch_norm_relu)
    self._build_box_net_layers(batch_norm_relu)

  def _class_net_batch_norm_name(self, i, level):
    return 'class-%d-%d' % (i, level)

  def _box_net_batch_norm_name(self, i, level):
    return 'box-%d-%d' % (i, level)

  def _build_class_net_layers(self, batch_norm_relu):
    """Build re-usable layers for class prediction network."""
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
    if self._use_separable_conv:
      self._class_predict = tf.keras.layers.SeparableConv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          padding='same',
          name='class-predict')
    else:
      self._class_predict = tf.keras.layers.Conv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='class-predict')
457
458
459
    self._class_conv = []
    self._class_batch_norm_relu = {}
    for i in range(self._num_convs):
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
      if self._use_separable_conv:
        self._class_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                activation=None,
                padding='same',
                name='class-' + str(i)))
      else:
        self._class_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                activation=None,
                padding='same',
                name='class-' + str(i)))
480
481
482
483
484
485
      for level in range(self._min_level, self._max_level + 1):
        name = self._class_net_batch_norm_name(i, level)
        self._class_batch_norm_relu[name] = batch_norm_relu(name=name)

  def _build_box_net_layers(self, batch_norm_relu):
    """Build re-usable layers for box prediction network."""
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    if self._use_separable_conv:
      self._box_predict = tf.keras.layers.SeparableConv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          padding='same',
          name='box-predict')
    else:
      self._box_predict = tf.keras.layers.Conv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='box-predict')
501
502
503
    self._box_conv = []
    self._box_batch_norm_relu = {}
    for i in range(self._num_convs):
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
      if self._use_separable_conv:
        self._box_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                padding='same',
                name='box-' + str(i)))
      else:
        self._box_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                padding='same',
                name='box-' + str(i)))
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
      for level in range(self._min_level, self._max_level + 1):
        name = self._box_net_batch_norm_name(i, level)
        self._box_batch_norm_relu[name] = batch_norm_relu(name=name)

  def __call__(self, fpn_features, is_training=None):
    """Returns outputs of RetinaNet head."""
    class_outputs = {}
    box_outputs = {}
    with backend.get_graph().as_default(), tf.name_scope('retinanet'):
      for level in range(self._min_level, self._max_level + 1):
        features = fpn_features[level]

        class_outputs[level] = self.class_net(
            features, level, is_training=is_training)
        box_outputs[level] = self.box_net(
            features, level, is_training=is_training)
    return class_outputs, box_outputs

  def class_net(self, features, level, is_training):
    """Class prediction network for RetinaNet."""
    with self._class_name_scope:
      for i in range(self._num_convs):
        features = self._class_conv[i](features)
        # The convolution layers in the class net are shared among all levels, but
        # each level has its batch normlization to capture the statistical
        # difference among different levels.
        name = self._class_net_batch_norm_name(i, level)
        features = self._class_batch_norm_relu[name](
            features, is_training=is_training)

      classes = self._class_predict(features)
    return classes

  def box_net(self, features, level, is_training=None):
    """Box regression network for RetinaNet."""
    with self._box_name_scope:
      for i in range(self._num_convs):
        features = self._box_conv[i](features)
        # The convolution layers in the box net are shared among all levels, but
        # each level has its batch normlization to capture the statistical
        # difference among different levels.
        name = self._box_net_batch_norm_name(i, level)
        features = self._box_batch_norm_relu[name](
            features, is_training=is_training)

      boxes = self._box_predict(features)
    return boxes


# TODO(yeqing): Refactor this class when it is ready for var_scope reuse.
class ShapemaskPriorHead(object):
  """ShapeMask Prior head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               use_category_for_mask,
               num_of_instances,
               min_mask_level,
               max_mask_level,
               num_clusters,
               temperature,
               shape_prior_path=None):
    """Initialize params to build RetinaNet head.

    Args:
      num_classes: Number of output classes.
      num_downsample_channels: number of channels in mask branch.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      num_of_instances: number of instances to sample in training time.
      min_mask_level: minimum FPN level to crop mask feature from.
      max_mask_level: maximum FPN level to crop mask feature from.
      num_clusters: number of clusters to use in K-Means.
      temperature: the temperature for shape prior learning.
      shape_prior_path: the path to load shape priors.
    """
    self._mask_num_classes = num_classes
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._use_category_for_mask = use_category_for_mask
    self._num_of_instances = num_of_instances
    self._min_mask_level = min_mask_level
    self._max_mask_level = max_mask_level
    self._num_clusters = num_clusters
    self._temperature = temperature
    self._shape_prior_path = shape_prior_path

  def __call__(self,
               fpn_features,
               boxes,
               outer_boxes,
               classes,
               is_training=None):
    """Generate the detection priors from the box detections and FPN features.

    This corresponds to the Fig. 4 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
      fpn_features: a dictionary of FPN features.
      boxes: a float tensor of shape [batch_size, num_instances, 4]
        representing the tight gt boxes from dataloader/detection.
      outer_boxes: a float tensor of shape [batch_size, num_instances, 4]
        representing the loose gt boxes from dataloader/detection.
      classes: a int Tensor of shape [batch_size, num_instances]
        of instance classes.
      is_training: training mode or not.

    Returns:
      crop_features: a float Tensor of shape [batch_size * num_instances,
          mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
          instance feature crop.
      detection_priors: A float Tensor of shape [batch_size * num_instances,
        mask_size, mask_size, 1].
    """
    with backend.get_graph().as_default():
      # loads class specific or agnostic shape priors
      if self._shape_prior_path:
        if self._use_category_for_mask:
          fid = tf.io.gfile.GFile(self._shape_prior_path, 'rb')
Yeqing Li's avatar
Yeqing Li committed
646
647
648
          # The encoding='bytes' options is for incompatibility between python2
          # and python3 pickle.
          class_tups = pickle.load(fid, encoding='bytes')
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
          max_class_id = class_tups[-1][0] + 1
          class_masks = np.zeros((max_class_id, self._num_clusters,
                                  self._mask_crop_size, self._mask_crop_size),
                                 dtype=np.float32)
          for cls_id, _, cls_mask in class_tups:
            assert cls_mask.shape == (self._num_clusters,
                                      self._mask_crop_size**2)
            class_masks[cls_id] = cls_mask.reshape(self._num_clusters,
                                                   self._mask_crop_size,
                                                   self._mask_crop_size)

          self.class_priors = tf.convert_to_tensor(
              value=class_masks, dtype=tf.float32)
        else:
          npy_path = tf.io.gfile.GFile(self._shape_prior_path)
          class_np_masks = np.load(npy_path)
          assert class_np_masks.shape == (
              self._num_clusters, self._mask_crop_size,
              self._mask_crop_size), 'Invalid priors!!!'
          self.class_priors = tf.convert_to_tensor(
              value=class_np_masks, dtype=tf.float32)
      else:
        self.class_priors = tf.zeros(
            [self._num_clusters, self._mask_crop_size, self._mask_crop_size],
            tf.float32)

      batch_size = boxes.get_shape()[0]
      min_level_shape = fpn_features[self._min_mask_level].get_shape().as_list()
      self._max_feature_size = min_level_shape[1]
      detection_prior_levels = self._compute_box_levels(boxes)
      level_outer_boxes = outer_boxes / tf.pow(
          2., tf.expand_dims(detection_prior_levels, -1))
      detection_prior_levels = tf.cast(detection_prior_levels, tf.int32)
682
      uniform_priors = spatial_transform_ops.crop_mask_in_target_box(
683
684
685
686
687
688
689
          tf.ones([
              batch_size, self._num_of_instances, self._mask_crop_size,
              self._mask_crop_size
          ], tf.float32), boxes, outer_boxes, self._mask_crop_size)

      # Prepare crop features.
      multi_level_features = self._get_multilevel_features(fpn_features)
690
      crop_features = spatial_transform_ops.single_level_feature_crop(
691
692
693
694
695
696
697
698
699
700
701
          multi_level_features, level_outer_boxes, detection_prior_levels,
          self._min_mask_level, self._mask_crop_size)

      # Predict and fuse shape priors.
      shape_weights = self._classify_and_fuse_detection_priors(
          uniform_priors, classes, crop_features)
      fused_shape_priors = self._fuse_priors(shape_weights, classes)
      fused_shape_priors = tf.reshape(fused_shape_priors, [
          batch_size, self._num_of_instances, self._mask_crop_size,
          self._mask_crop_size
      ])
702
      predicted_detection_priors = spatial_transform_ops.crop_mask_in_target_box(
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
          fused_shape_priors, boxes, outer_boxes, self._mask_crop_size)
      predicted_detection_priors = tf.reshape(
          predicted_detection_priors,
          [-1, self._mask_crop_size, self._mask_crop_size, 1])

      return crop_features, predicted_detection_priors

  def _get_multilevel_features(self, fpn_features):
    """Get multilevel features from FPN feature dictionary into one tensor.

    Args:
      fpn_features: a dictionary of FPN features.

    Returns:
      features: a float tensor of shape [batch_size, num_levels,
        max_feature_size, max_feature_size, num_downsample_channels].
    """
    # TODO(yeqing): Recover reuse=tf.AUTO_REUSE logic.
    with tf.name_scope('masknet'):
      mask_feats = {}
      # Reduce the feature dimension at each FPN level by convolution.
      for feat_level in range(self._min_mask_level, self._max_mask_level + 1):
        mask_feats[feat_level] = tf.keras.layers.Conv2D(
            self._num_downsample_channels,
            kernel_size=(1, 1),
            bias_initializer=tf.zeros_initializer(),
            kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
            padding='same',
            name='mask-downsample')(
                fpn_features[feat_level])

      # Concat features through padding to the max size.
      features = [mask_feats[self._min_mask_level]]
      for feat_level in range(self._min_mask_level + 1,
                              self._max_mask_level + 1):
        features.append(tf.image.pad_to_bounding_box(
            mask_feats[feat_level], 0, 0,
            self._max_feature_size, self._max_feature_size))

      features = tf.stack(features, axis=1)

    return features

  def _compute_box_levels(self, boxes):
    """Compute the box FPN levels.

    Args:
      boxes: a float tensor of shape [batch_size, num_instances, 4].

    Returns:
      levels: a int tensor of shape [batch_size, num_instances].
    """
    object_sizes = tf.stack([
        boxes[:, :, 2] - boxes[:, :, 0],
        boxes[:, :, 3] - boxes[:, :, 1],
    ], axis=2)
    object_sizes = tf.reduce_max(input_tensor=object_sizes, axis=2)
    ratios = object_sizes / self._mask_crop_size
    levels = tf.math.ceil(tf.math.log(ratios) / tf.math.log(2.))
    levels = tf.maximum(tf.minimum(levels, self._max_mask_level),
                        self._min_mask_level)
    return levels

  def _classify_and_fuse_detection_priors(self, uniform_priors,
                                          detection_prior_classes,
                                          crop_features):
    """Classify the uniform prior by predicting the shape modes.

    Classify the object crop features into K modes of the clusters for each
    category.

    Args:
      uniform_priors: A float Tensor of shape [batch_size, num_instances,
        mask_size, mask_size] representing the uniform detection priors.
      detection_prior_classes: A int Tensor of shape [batch_size, num_instances]
        of detection class ids.
      crop_features: A float Tensor of shape [batch_size * num_instances,
        mask_size, mask_size, num_channels].

    Returns:
      shape_weights: A float Tensor of shape
        [batch_size * num_instances, num_clusters] representing the classifier
        output probability over all possible shapes.
    """
    location_detection_priors = tf.reshape(
        uniform_priors, [-1, self._mask_crop_size, self._mask_crop_size, 1])
    # Generate image embedding to shape.
    fused_shape_features = crop_features * location_detection_priors

    shape_embedding = tf.reduce_mean(
        input_tensor=fused_shape_features, axis=(1, 2))
    if not self._use_category_for_mask:
      # TODO(weicheng) use custom op for performance
      shape_logits = tf.keras.layers.Dense(
          self._num_clusters,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01))(
              shape_embedding)
      shape_logits = tf.reshape(shape_logits,
                                [-1, self._num_clusters]) / self._temperature
      shape_weights = tf.nn.softmax(shape_logits, name='shape_prior_weights')
    else:
      shape_logits = tf.keras.layers.Dense(
          self._mask_num_classes * self._num_clusters,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01))(
              shape_embedding)
      shape_logits = tf.reshape(
          shape_logits, [-1, self._mask_num_classes, self._num_clusters])
      training_classes = tf.reshape(detection_prior_classes, [-1])
      class_idx = tf.stack(
          [tf.range(tf.size(input=training_classes)), training_classes - 1],
          axis=1)
      shape_logits = tf.gather_nd(shape_logits, class_idx) / self._temperature
      shape_weights = tf.nn.softmax(shape_logits, name='shape_prior_weights')

    return shape_weights

  def _fuse_priors(self, shape_weights, detection_prior_classes):
    """Fuse shape priors by the predicted shape probability.

    Args:
      shape_weights: A float Tensor of shape [batch_size * num_instances,
        num_clusters] of predicted shape probability distribution.
      detection_prior_classes: A int Tensor of shape [batch_size, num_instances]
        of detection class ids.

    Returns:
      detection_priors: A float Tensor of shape [batch_size * num_instances,
        mask_size, mask_size, 1].
    """
    if self._use_category_for_mask:
      object_class_priors = tf.gather(
          self.class_priors, detection_prior_classes)
    else:
      num_batch_instances = shape_weights.get_shape()[0]
      object_class_priors = tf.tile(
          tf.expand_dims(self.class_priors, 0),
          [num_batch_instances, 1, 1, 1])

    vector_class_priors = tf.reshape(
        object_class_priors,
        [-1, self._num_clusters,
         self._mask_crop_size * self._mask_crop_size])
    detection_priors = tf.matmul(
        tf.expand_dims(shape_weights, 1), vector_class_priors)[:, 0, :]
    detection_priors = tf.reshape(
        detection_priors, [-1, self._mask_crop_size, self._mask_crop_size, 1])
    return detection_priors


class ShapemaskCoarsemaskHead(object):
  """ShapemaskCoarsemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               use_category_for_mask,
               num_convs):
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
    """
    self._mask_num_classes = num_classes
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._use_category_for_mask = use_category_for_mask
    self._num_convs = num_convs
    if not use_category_for_mask:
      assert num_classes == 1

  def __call__(self,
               crop_features,
               detection_priors,
               inst_classes,
               is_training=None):
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
      crop_features: a float Tensor of shape [batch_size * num_instances,
        mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
        instance feature crop.
      detection_priors: a float Tensor of shape [batch_size * num_instances,
        mask_crop_size, mask_crop_size, 1]. This is the detection prior for
        the instance.
      inst_classes: a int Tensor of shape [batch_size, num_instances]
        of instance classes.
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
        [batch_size * num_instances, mask_size, mask_size, num_classes].
    """
    # Embed the anchor map into some feature space for anchor conditioning.
    detection_prior_features = tf.keras.layers.Conv2D(
        self._num_downsample_channels,
        kernel_size=(1, 1),
        bias_initializer=tf.zeros_initializer(),
        kernel_initializer=tf.keras.initializers.RandomNormal(
            mean=0., stddev=0.01),
        padding='same',
        name='anchor-conv')(
            detection_priors)

    prior_conditioned_features = crop_features + detection_prior_features
    coarse_output_features = self.coarsemask_decoder_net(
        prior_conditioned_features, is_training)

    coarse_mask_classes = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(
            mean=0, stddev=0.01),
        padding='same',
        name='class-predict')(
            coarse_output_features)

    if self._use_category_for_mask:
      inst_classes = tf.cast(tf.reshape(inst_classes, [-1]), tf.int32)
      coarse_mask_classes_t = tf.transpose(
          a=coarse_mask_classes, perm=(0, 3, 1, 2))
      # pylint: disable=g-long-lambda
      coarse_mask_logits = tf.cond(
          pred=tf.size(input=inst_classes) > 0,
          true_fn=lambda: tf.gather_nd(
              coarse_mask_classes_t,
              tf.stack(
                  [tf.range(tf.size(input=inst_classes)), inst_classes - 1],
                  axis=1)),
          false_fn=lambda: coarse_mask_classes_t[:, 0, :, :])
      # pylint: enable=g-long-lambda
      coarse_mask_logits = tf.expand_dims(coarse_mask_logits, -1)
    else:
      coarse_mask_logits = coarse_mask_classes

    coarse_class_probs = tf.nn.sigmoid(coarse_mask_logits)
    class_probs = tf.cast(coarse_class_probs, prior_conditioned_features.dtype)

    return coarse_mask_classes, class_probs, prior_conditioned_features

  def coarsemask_decoder_net(self,
                             images,
                             is_training=None,
                             batch_norm_relu=nn_ops.BatchNormRelu):
    """Coarse mask decoder network architecture.

    Args:
      images: A tensor of size [batch, height_in, width_in, channels_in].
      is_training: Whether batch_norm layers are in training mode.
      batch_norm_relu: an operation that includes a batch normalization layer
        followed by a relu layer(optional).
    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels]
    """
    for i in range(self._num_convs):
      images = tf.keras.layers.Conv2D(
          self._num_downsample_channels,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          activation=None,
          padding='same',
          name='coarse-class-%d' % i)(
              images)
      images = batch_norm_relu(name='coarse-class-%d-bn' % i)(
          images, is_training=is_training)

    return images


class ShapemaskFinemaskHead(object):
  """ShapemaskFinemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               num_convs,
               coarse_mask_thr,
               gt_upsample_scale,
               batch_norm_relu=nn_ops.BatchNormRelu):
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
      coarse_mask_thr: the threshold for suppressing noisy coarse prediction.
      gt_upsample_scale: scale for upsampling groundtruths.
      batch_norm_relu: an operation that includes a batch normalization layer
        followed by a relu layer(optional).
    """
    self._mask_num_classes = num_classes
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._num_convs = num_convs
    self._coarse_mask_thr = coarse_mask_thr
    self._gt_upsample_scale = gt_upsample_scale

    self._class_predict_conv = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(
            mean=0, stddev=0.01),
        padding='same',
        name='affinity-class-predict')
    self._upsample_conv = tf.keras.layers.Conv2DTranspose(
        self._num_downsample_channels // 2,
        (self._gt_upsample_scale, self._gt_upsample_scale),
        (self._gt_upsample_scale, self._gt_upsample_scale))
    self._fine_class_conv = []
    self._fine_class_bn = []
    for i in range(self._num_convs):
      self._fine_class_conv.append(
          tf.keras.layers.Conv2D(
              self._num_downsample_channels,
              kernel_size=(3, 3),
              bias_initializer=tf.zeros_initializer(),
              kernel_initializer=tf.keras.initializers.RandomNormal(
                  stddev=0.01),
              activation=None,
              padding='same',
              name='fine-class-%d' % i))
      self._fine_class_bn.append(batch_norm_relu(name='fine-class-%d-bn' % i))

  def __call__(self, prior_conditioned_features, class_probs, is_training=None):
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
      prior_conditioned_features: a float Tensor of shape [batch_size *
        num_instances, mask_crop_size, mask_crop_size, num_downsample_channels].
        This is the instance feature crop.
      class_probs: a float Tensor of shape [batch_size * num_instances,
        mask_crop_size, mask_crop_size, 1]. This is the class probability of
        instance segmentation.
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
        [batch_size * num_instances, mask_size, mask_size, num_classes].
    """
    with backend.get_graph().as_default(), tf.name_scope('affinity-masknet'):
      # Extract the foreground mean features
      point_samp_prob_thr = 1. / (1. + tf.exp(-self._coarse_mask_thr))
      point_samp_prob_thr = tf.cast(point_samp_prob_thr, class_probs.dtype)
      class_probs = tf.where(
          tf.greater(class_probs, point_samp_prob_thr), class_probs,
          tf.zeros_like(class_probs))
      weighted_features = class_probs * prior_conditioned_features
      sum_class_vector = tf.reduce_sum(
          input_tensor=class_probs, axis=(1, 2)) + tf.constant(
              1e-20, class_probs.dtype)
      instance_embedding = tf.reduce_sum(
          input_tensor=weighted_features, axis=(1, 2)) / sum_class_vector

      # Take the difference between crop features and mean instance features.
      instance_features = prior_conditioned_features - tf.reshape(
          instance_embedding, (-1, 1, 1, self._num_downsample_channels))

      # Decoder to generate upsampled segmentation mask.
      affinity_output_features = self.finemask_decoder_net(
          instance_features, is_training)

      # Predict per-class instance masks.
      affinity_mask_classes = self._class_predict_conv(affinity_output_features)

      return affinity_mask_classes

  def finemask_decoder_net(self, images, is_training=None):
    """Fine mask decoder network architecture.

    Args:
      images: A tensor of size [batch, height_in, width_in, channels_in].
      is_training: Whether batch_norm layers are in training mode.

    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels], where output size is self._gt_upsample_scale times
        that of input.
    """
    for i in range(self._num_convs):
      images = self._fine_class_conv[i](images)
      images = self._fine_class_bn[i](images, is_training=is_training)

    if self._gt_upsample_scale > 1:
      images = self._upsample_conv(images)

    return images