heads.py 44.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes to build various prediction heads in all supported models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Yeqing Li's avatar
Yeqing Li committed
21
import functools
22
23
24
25
26
27
28
import pickle

from absl import logging
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.keras import backend
from official.vision.detection.modeling.architecture import nn_ops
29
from official.vision.detection.ops import spatial_transform_ops
30
31


Yeqing Li's avatar
Yeqing Li committed
32
class RpnHead(tf.keras.layers.Layer):
33
34
35
36
37
38
  """Region Proposal Network head."""

  def __init__(self,
               min_level,
               max_level,
               anchors_per_location,
Yeqing Li's avatar
Yeqing Li committed
39
40
41
               num_convs=2,
               num_filters=256,
               use_separable_conv=False,
Pengchong Jin's avatar
Pengchong Jin committed
42
               activation='relu',
Yeqing Li's avatar
Yeqing Li committed
43
               use_batch_norm=True,
Pengchong Jin's avatar
Pengchong Jin committed
44
45
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
46
47
48
49
50
51
52
    """Initialize params to build Region Proposal Network head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      anchors_per_location: `int` number of number of anchors per pixel
        location.
Yeqing Li's avatar
Yeqing Li committed
53
54
55
56
57
58
59
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Pengchong Jin's avatar
Pengchong Jin committed
60
61
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
62
63
64
65
    """
    self._min_level = min_level
    self._max_level = max_level
    self._anchors_per_location = anchors_per_location
Pengchong Jin's avatar
Pengchong Jin committed
66
67
68
69
70
71
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
72
73
74
75
76
77
78
79
80
81
82
83
84
    self._use_batch_norm = use_batch_norm

    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          bias_initializer=tf.zeros_initializer())

Yeqing Li's avatar
Yeqing Li committed
85
    self._rpn_conv = self._conv2d_op(
Yeqing Li's avatar
Yeqing Li committed
86
        num_filters,
87
88
        kernel_size=(3, 3),
        strides=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
89
        activation=(None if self._use_batch_norm else self._activation_op),
90
91
        padding='same',
        name='rpn')
Yeqing Li's avatar
Yeqing Li committed
92
    self._rpn_class_conv = self._conv2d_op(
93
94
95
96
97
        anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-class')
Yeqing Li's avatar
Yeqing Li committed
98
    self._rpn_box_conv = self._conv2d_op(
99
100
101
102
103
        4 * anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-box')
Yeqing Li's avatar
Yeqing Li committed
104

Pengchong Jin's avatar
Pengchong Jin committed
105
    self._norm_activations = {}
Yeqing Li's avatar
Yeqing Li committed
106
107
    if self._use_batch_norm:
      for level in range(self._min_level, self._max_level + 1):
Pengchong Jin's avatar
Pengchong Jin committed
108
        self._norm_activations[level] = norm_activation(name='rpn-l%d-bn' %
Yeqing Li's avatar
Yeqing Li committed
109
                                                        level)
110
111
112
113
114

  def _shared_rpn_heads(self, features, anchors_per_location, level,
                        is_training):
    """Shared RPN heads."""
    features = self._rpn_conv(features)
Yeqing Li's avatar
Yeqing Li committed
115
116
    if self._use_batch_norm:
      # The batch normalization layers are not shared between levels.
Pengchong Jin's avatar
Pengchong Jin committed
117
      features = self._norm_activations[level](
Yeqing Li's avatar
Yeqing Li committed
118
          features, is_training=is_training)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    # Proposal classification scores
    scores = self._rpn_class_conv(features)
    # Proposal bbox regression deltas
    bboxes = self._rpn_box_conv(features)

    return scores, bboxes

  def __call__(self, features, is_training=None):

    scores_outputs = {}
    box_outputs = {}

    with backend.get_graph().as_default(), tf.name_scope('rpn_head'):
      for level in range(self._min_level, self._max_level + 1):
        scores_output, box_output = self._shared_rpn_heads(
            features[level], self._anchors_per_location, level, is_training)
        scores_outputs[level] = scores_output
        box_outputs[level] = box_output
      return scores_outputs, box_outputs


Yeqing Li's avatar
Yeqing Li committed
140
class FastrcnnHead(tf.keras.layers.Layer):
141
142
143
144
  """Fast R-CNN box head."""

  def __init__(self,
               num_classes,
Yeqing Li's avatar
Yeqing Li committed
145
146
147
148
149
               num_convs=0,
               num_filters=256,
               use_separable_conv=False,
               num_fcs=2,
               fc_dims=1024,
Pengchong Jin's avatar
Pengchong Jin committed
150
               activation='relu',
Yeqing Li's avatar
Yeqing Li committed
151
               use_batch_norm=True,
Pengchong Jin's avatar
Pengchong Jin committed
152
153
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
154
155
156
157
    """Initialize params to build Fast R-CNN box head.

    Args:
      num_classes: a integer for the number of classes.
Yeqing Li's avatar
Yeqing Li committed
158
159
160
161
162
163
164
165
166
167
168
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the FC layers.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      num_fcs: `int` number that represents the number of FC layers before the
        predictions.
      fc_dims: `int` number that represents the number of dimension of the FC
        layers.
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Pengchong Jin's avatar
Pengchong Jin committed
169
170
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
171
172
    """
    self._num_classes = num_classes
Yeqing Li's avatar
Yeqing Li committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())

    self._num_fcs = num_fcs
    self._fc_dims = fc_dims
Pengchong Jin's avatar
Pengchong Jin committed
190
191
192
193
194
195
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
196
    self._use_batch_norm = use_batch_norm
Pengchong Jin's avatar
Pengchong Jin committed
197
    self._norm_activation = norm_activation
198

Yeqing Li's avatar
Yeqing Li committed
199
200
201
202
203
204
205
206
207
208
    self._conv_ops = []
    self._conv_bn_ops = []
    for i in range(self._num_convs):
      self._conv_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
209
              activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
210
211
              name='conv_{}'.format(i)))
      if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
212
        self._conv_bn_ops.append(self._norm_activation())
Yeqing Li's avatar
Yeqing Li committed
213
214
215
216
217
218
219

    self._fc_ops = []
    self._fc_bn_ops = []
    for i in range(self._num_fcs):
      self._fc_ops.append(
          tf.keras.layers.Dense(
              units=self._fc_dims,
Pengchong Jin's avatar
Pengchong Jin committed
220
              activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
221
222
              name='fc{}'.format(i)))
      if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
223
        self._fc_bn_ops.append(self._norm_activation(fused=False))
Yeqing Li's avatar
Yeqing Li committed
224
225
226
227
228
229
230
231
232
233
234
235

    self._class_predict = tf.keras.layers.Dense(
        self._num_classes,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        bias_initializer=tf.zeros_initializer(),
        name='class-predict')
    self._box_predict = tf.keras.layers.Dense(
        self._num_classes * 4,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.001),
        bias_initializer=tf.zeros_initializer(),
        name='box-predict')

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  def __call__(self, roi_features, is_training=None):
    """Box and class branches for the Mask-RCNN model.

    Args:
      roi_features: A ROI feature tensor of shape
        [batch_size, num_rois, height_l, width_l, num_filters].
      is_training: `boolean`, if True if model is in training mode.

    Returns:
      class_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes], representing the class predictions.
      box_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes * 4], representing the box
        predictions.
    """

    with backend.get_graph().as_default(), tf.name_scope('fast_rcnn_head'):
      # reshape inputs beofre FC.
      _, num_rois, height, width, filters = roi_features.get_shape().as_list()
Yeqing Li's avatar
Yeqing Li committed
255
256
257

      net = tf.reshape(roi_features, [-1, height, width, filters])
      for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
258
        net = self._conv_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
259
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
260
          net = self._conv_bn_ops[i](net, is_training=is_training)
Yeqing Li's avatar
Yeqing Li committed
261
262
263
264
265

      filters = self._num_filters if self._num_convs > 0 else filters
      net = tf.reshape(net, [-1, num_rois, height * width * filters])

      for i in range(self._num_fcs):
Yeqing Li's avatar
Yeqing Li committed
266
        net = self._fc_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
267
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
268
          net = self._fc_bn_ops[i](net, is_training=is_training)
269

Yeqing Li's avatar
Yeqing Li committed
270
271
      class_outputs = self._class_predict(net)
      box_outputs = self._box_predict(net)
272
273
274
      return class_outputs, box_outputs


Yeqing Li's avatar
Yeqing Li committed
275
class MaskrcnnHead(tf.keras.layers.Layer):
276
277
278
279
  """Mask R-CNN head."""

  def __init__(self,
               num_classes,
Pengchong Jin's avatar
Pengchong Jin committed
280
               mask_target_size,
Yeqing Li's avatar
Yeqing Li committed
281
282
283
               num_convs=4,
               num_filters=256,
               use_separable_conv=False,
Pengchong Jin's avatar
Pengchong Jin committed
284
               activation='relu',
Yeqing Li's avatar
Yeqing Li committed
285
               use_batch_norm=True,
Pengchong Jin's avatar
Pengchong Jin committed
286
287
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
288
289
290
291
    """Initialize params to build Fast R-CNN head.

    Args:
      num_classes: a integer for the number of classes.
Pengchong Jin's avatar
Pengchong Jin committed
292
      mask_target_size: a integer that is the resolution of masks.
Yeqing Li's avatar
Yeqing Li committed
293
294
295
296
297
298
299
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Pengchong Jin's avatar
Pengchong Jin committed
300
301
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
302
303
    """
    self._num_classes = num_classes
Pengchong Jin's avatar
Pengchong Jin committed
304
    self._mask_target_size = mask_target_size
Yeqing Li's avatar
Yeqing Li committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())
Pengchong Jin's avatar
Pengchong Jin committed
319
320
321
322
323
324
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
325
    self._use_batch_norm = use_batch_norm
Pengchong Jin's avatar
Pengchong Jin committed
326
    self._norm_activation = norm_activation
Yeqing Li's avatar
Yeqing Li committed
327
328
329
330
331
332
333
334
335
    self._conv2d_ops = []
    for i in range(self._num_convs):
      self._conv2d_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
336
              activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
337
338
339
340
341
342
              name='mask-conv-l%d' % i))
    self._mask_conv_transpose = tf.keras.layers.Conv2DTranspose(
        self._num_filters,
        kernel_size=(2, 2),
        strides=(2, 2),
        padding='valid',
Pengchong Jin's avatar
Pengchong Jin committed
343
        activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
344
345
346
347
        kernel_initializer=tf.keras.initializers.VarianceScaling(
            scale=2, mode='fan_out', distribution='untruncated_normal'),
        bias_initializer=tf.zeros_initializer(),
        name='conv5-mask')
348
349
350
351
352
353
354
355
356
357

  def __call__(self, roi_features, class_indices, is_training=None):
    """Mask branch for the Mask-RCNN model.

    Args:
      roi_features: A ROI feature tensor of shape
        [batch_size, num_rois, height_l, width_l, num_filters].
      class_indices: a Tensor of shape [batch_size, num_rois], indicating
        which class the ROI is.
      is_training: `boolean`, if True if model is in training mode.
Yeqing Li's avatar
Yeqing Li committed
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    Returns:
      mask_outputs: a tensor with a shape of
        [batch_size, num_masks, mask_height, mask_width, num_classes],
        representing the mask predictions.
      fg_gather_indices: a tensor with a shape of [batch_size, num_masks, 2],
        representing the fg mask targets.
    Raises:
      ValueError: If boxes is not a rank-3 tensor or the last dimension of
        boxes is not 4.
    """

    with backend.get_graph().as_default():
      with tf.name_scope('mask_head'):
        _, num_rois, height, width, filters = roi_features.get_shape().as_list()
        net = tf.reshape(roi_features, [-1, height, width, filters])

Yeqing Li's avatar
Yeqing Li committed
375
        for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
376
          net = self._conv2d_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
377
          if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
378
            net = self._norm_activation()(net, is_training=is_training)
379

Yeqing Li's avatar
Yeqing Li committed
380
        net = self._mask_conv_transpose(net)
Yeqing Li's avatar
Yeqing Li committed
381
        if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
382
          net = self._norm_activation()(net, is_training=is_training)
Yeqing Li's avatar
Yeqing Li committed
383
384
385
386

        mask_outputs = self._conv2d_op(
            self._num_classes,
            kernel_size=(1, 1),
387
388
389
390
391
            strides=(1, 1),
            padding='valid',
            name='mask_fcn_logits')(
                net)
        mask_outputs = tf.reshape(mask_outputs, [
Pengchong Jin's avatar
Pengchong Jin committed
392
            -1, num_rois, self._mask_target_size, self._mask_target_size,
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
            self._num_classes
        ])

        with tf.name_scope('masks_post_processing'):
          # TODO(pengchong): Figure out the way not to use the static inferred
          # batch size.
          batch_size, num_masks = class_indices.get_shape().as_list()
          mask_outputs = tf.transpose(a=mask_outputs, perm=[0, 1, 4, 2, 3])
          # Contructs indices for gather.
          batch_indices = tf.tile(
              tf.expand_dims(tf.range(batch_size), axis=1), [1, num_masks])
          mask_indices = tf.tile(
              tf.expand_dims(tf.range(num_masks), axis=0), [batch_size, 1])
          gather_indices = tf.stack(
              [batch_indices, mask_indices, class_indices], axis=2)
          mask_outputs = tf.gather_nd(mask_outputs, gather_indices)
      return mask_outputs


class RetinanetHead(object):
  """RetinaNet head."""

  def __init__(self,
               min_level,
               max_level,
               num_classes,
               anchors_per_location,
               num_convs=4,
               num_filters=256,
422
               use_separable_conv=False,
Pengchong Jin's avatar
Pengchong Jin committed
423
424
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
425
426
427
428
429
430
431
432
433
434
    """Initialize params to build RetinaNet head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      num_classes: `int` number of classification categories.
      anchors_per_location: `int` number of anchors per pixel location.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
      num_filters: `int` number of filters used in the head architecture.
435
436
      use_separable_conv: `bool` to indicate whether to use separable
        convoluation.
Pengchong Jin's avatar
Pengchong Jin committed
437
438
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
439
440
441
442
443
444
445
446
447
    """
    self._min_level = min_level
    self._max_level = max_level

    self._num_classes = num_classes
    self._anchors_per_location = anchors_per_location

    self._num_convs = num_convs
    self._num_filters = num_filters
448
    self._use_separable_conv = use_separable_conv
449
450
451
452
    with tf.name_scope('class_net') as scope_name:
      self._class_name_scope = tf.name_scope(scope_name)
    with tf.name_scope('box_net') as scope_name:
      self._box_name_scope = tf.name_scope(scope_name)
Pengchong Jin's avatar
Pengchong Jin committed
453
454
    self._build_class_net_layers(norm_activation)
    self._build_box_net_layers(norm_activation)
455
456
457
458
459
460
461

  def _class_net_batch_norm_name(self, i, level):
    return 'class-%d-%d' % (i, level)

  def _box_net_batch_norm_name(self, i, level):
    return 'box-%d-%d' % (i, level)

Pengchong Jin's avatar
Pengchong Jin committed
462
  def _build_class_net_layers(self, norm_activation):
463
    """Build re-usable layers for class prediction network."""
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    if self._use_separable_conv:
      self._class_predict = tf.keras.layers.SeparableConv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          padding='same',
          name='class-predict')
    else:
      self._class_predict = tf.keras.layers.Conv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='class-predict')
479
    self._class_conv = []
Pengchong Jin's avatar
Pengchong Jin committed
480
    self._class_norm_activation = {}
481
    for i in range(self._num_convs):
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
      if self._use_separable_conv:
        self._class_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                activation=None,
                padding='same',
                name='class-' + str(i)))
      else:
        self._class_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                activation=None,
                padding='same',
                name='class-' + str(i)))
502
503
      for level in range(self._min_level, self._max_level + 1):
        name = self._class_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
504
        self._class_norm_activation[name] = norm_activation(name=name)
505

Pengchong Jin's avatar
Pengchong Jin committed
506
  def _build_box_net_layers(self, norm_activation):
507
    """Build re-usable layers for box prediction network."""
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    if self._use_separable_conv:
      self._box_predict = tf.keras.layers.SeparableConv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          padding='same',
          name='box-predict')
    else:
      self._box_predict = tf.keras.layers.Conv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='box-predict')
523
    self._box_conv = []
Pengchong Jin's avatar
Pengchong Jin committed
524
    self._box_norm_activation = {}
525
    for i in range(self._num_convs):
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
      if self._use_separable_conv:
        self._box_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                padding='same',
                name='box-' + str(i)))
      else:
        self._box_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                padding='same',
                name='box-' + str(i)))
546
547
      for level in range(self._min_level, self._max_level + 1):
        name = self._box_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
548
        self._box_norm_activation[name] = norm_activation(name=name)
549
550
551
552
553

  def __call__(self, fpn_features, is_training=None):
    """Returns outputs of RetinaNet head."""
    class_outputs = {}
    box_outputs = {}
Pengchong Jin's avatar
Pengchong Jin committed
554
    with backend.get_graph().as_default(), tf.name_scope('retinanet_head'):
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
      for level in range(self._min_level, self._max_level + 1):
        features = fpn_features[level]

        class_outputs[level] = self.class_net(
            features, level, is_training=is_training)
        box_outputs[level] = self.box_net(
            features, level, is_training=is_training)
    return class_outputs, box_outputs

  def class_net(self, features, level, is_training):
    """Class prediction network for RetinaNet."""
    with self._class_name_scope:
      for i in range(self._num_convs):
        features = self._class_conv[i](features)
        # The convolution layers in the class net are shared among all levels, but
        # each level has its batch normlization to capture the statistical
        # difference among different levels.
        name = self._class_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
573
        features = self._class_norm_activation[name](
574
575
576
577
578
579
580
581
582
583
584
585
586
587
            features, is_training=is_training)

      classes = self._class_predict(features)
    return classes

  def box_net(self, features, level, is_training=None):
    """Box regression network for RetinaNet."""
    with self._box_name_scope:
      for i in range(self._num_convs):
        features = self._box_conv[i](features)
        # The convolution layers in the box net are shared among all levels, but
        # each level has its batch normlization to capture the statistical
        # difference among different levels.
        name = self._box_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
588
        features = self._box_norm_activation[name](
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
            features, is_training=is_training)

      boxes = self._box_predict(features)
    return boxes


# TODO(yeqing): Refactor this class when it is ready for var_scope reuse.
class ShapemaskPriorHead(object):
  """ShapeMask Prior head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               use_category_for_mask,
               num_of_instances,
               min_mask_level,
               max_mask_level,
               num_clusters,
               temperature,
               shape_prior_path=None):
    """Initialize params to build RetinaNet head.

    Args:
      num_classes: Number of output classes.
      num_downsample_channels: number of channels in mask branch.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      num_of_instances: number of instances to sample in training time.
      min_mask_level: minimum FPN level to crop mask feature from.
      max_mask_level: maximum FPN level to crop mask feature from.
      num_clusters: number of clusters to use in K-Means.
      temperature: the temperature for shape prior learning.
      shape_prior_path: the path to load shape priors.
    """
    self._mask_num_classes = num_classes
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._use_category_for_mask = use_category_for_mask
    self._num_of_instances = num_of_instances
    self._min_mask_level = min_mask_level
    self._max_mask_level = max_mask_level
    self._num_clusters = num_clusters
    self._temperature = temperature
    self._shape_prior_path = shape_prior_path

  def __call__(self,
               fpn_features,
               boxes,
               outer_boxes,
               classes,
               is_training=None):
    """Generate the detection priors from the box detections and FPN features.

    This corresponds to the Fig. 4 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
      fpn_features: a dictionary of FPN features.
      boxes: a float tensor of shape [batch_size, num_instances, 4]
        representing the tight gt boxes from dataloader/detection.
      outer_boxes: a float tensor of shape [batch_size, num_instances, 4]
        representing the loose gt boxes from dataloader/detection.
      classes: a int Tensor of shape [batch_size, num_instances]
        of instance classes.
      is_training: training mode or not.

    Returns:
      crop_features: a float Tensor of shape [batch_size * num_instances,
          mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
          instance feature crop.
      detection_priors: A float Tensor of shape [batch_size * num_instances,
        mask_size, mask_size, 1].
    """
    with backend.get_graph().as_default():
      # loads class specific or agnostic shape priors
      if self._shape_prior_path:
        if self._use_category_for_mask:
          fid = tf.io.gfile.GFile(self._shape_prior_path, 'rb')
Yeqing Li's avatar
Yeqing Li committed
668
669
670
          # The encoding='bytes' options is for incompatibility between python2
          # and python3 pickle.
          class_tups = pickle.load(fid, encoding='bytes')
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
          max_class_id = class_tups[-1][0] + 1
          class_masks = np.zeros((max_class_id, self._num_clusters,
                                  self._mask_crop_size, self._mask_crop_size),
                                 dtype=np.float32)
          for cls_id, _, cls_mask in class_tups:
            assert cls_mask.shape == (self._num_clusters,
                                      self._mask_crop_size**2)
            class_masks[cls_id] = cls_mask.reshape(self._num_clusters,
                                                   self._mask_crop_size,
                                                   self._mask_crop_size)

          self.class_priors = tf.convert_to_tensor(
              value=class_masks, dtype=tf.float32)
        else:
          npy_path = tf.io.gfile.GFile(self._shape_prior_path)
          class_np_masks = np.load(npy_path)
          assert class_np_masks.shape == (
              self._num_clusters, self._mask_crop_size,
              self._mask_crop_size), 'Invalid priors!!!'
          self.class_priors = tf.convert_to_tensor(
              value=class_np_masks, dtype=tf.float32)
      else:
        self.class_priors = tf.zeros(
            [self._num_clusters, self._mask_crop_size, self._mask_crop_size],
            tf.float32)

      batch_size = boxes.get_shape()[0]
      min_level_shape = fpn_features[self._min_mask_level].get_shape().as_list()
      self._max_feature_size = min_level_shape[1]
      detection_prior_levels = self._compute_box_levels(boxes)
      level_outer_boxes = outer_boxes / tf.pow(
          2., tf.expand_dims(detection_prior_levels, -1))
      detection_prior_levels = tf.cast(detection_prior_levels, tf.int32)
704
      uniform_priors = spatial_transform_ops.crop_mask_in_target_box(
705
706
707
708
709
710
711
          tf.ones([
              batch_size, self._num_of_instances, self._mask_crop_size,
              self._mask_crop_size
          ], tf.float32), boxes, outer_boxes, self._mask_crop_size)

      # Prepare crop features.
      multi_level_features = self._get_multilevel_features(fpn_features)
712
      crop_features = spatial_transform_ops.single_level_feature_crop(
713
714
715
716
717
718
719
720
721
722
723
          multi_level_features, level_outer_boxes, detection_prior_levels,
          self._min_mask_level, self._mask_crop_size)

      # Predict and fuse shape priors.
      shape_weights = self._classify_and_fuse_detection_priors(
          uniform_priors, classes, crop_features)
      fused_shape_priors = self._fuse_priors(shape_weights, classes)
      fused_shape_priors = tf.reshape(fused_shape_priors, [
          batch_size, self._num_of_instances, self._mask_crop_size,
          self._mask_crop_size
      ])
724
      predicted_detection_priors = spatial_transform_ops.crop_mask_in_target_box(
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
          fused_shape_priors, boxes, outer_boxes, self._mask_crop_size)
      predicted_detection_priors = tf.reshape(
          predicted_detection_priors,
          [-1, self._mask_crop_size, self._mask_crop_size, 1])

      return crop_features, predicted_detection_priors

  def _get_multilevel_features(self, fpn_features):
    """Get multilevel features from FPN feature dictionary into one tensor.

    Args:
      fpn_features: a dictionary of FPN features.

    Returns:
      features: a float tensor of shape [batch_size, num_levels,
        max_feature_size, max_feature_size, num_downsample_channels].
    """
    # TODO(yeqing): Recover reuse=tf.AUTO_REUSE logic.
    with tf.name_scope('masknet'):
      mask_feats = {}
      # Reduce the feature dimension at each FPN level by convolution.
      for feat_level in range(self._min_mask_level, self._max_mask_level + 1):
        mask_feats[feat_level] = tf.keras.layers.Conv2D(
            self._num_downsample_channels,
            kernel_size=(1, 1),
            bias_initializer=tf.zeros_initializer(),
            kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
            padding='same',
            name='mask-downsample')(
                fpn_features[feat_level])

      # Concat features through padding to the max size.
      features = [mask_feats[self._min_mask_level]]
      for feat_level in range(self._min_mask_level + 1,
                              self._max_mask_level + 1):
        features.append(tf.image.pad_to_bounding_box(
            mask_feats[feat_level], 0, 0,
            self._max_feature_size, self._max_feature_size))

      features = tf.stack(features, axis=1)

    return features

  def _compute_box_levels(self, boxes):
    """Compute the box FPN levels.

    Args:
      boxes: a float tensor of shape [batch_size, num_instances, 4].

    Returns:
      levels: a int tensor of shape [batch_size, num_instances].
    """
    object_sizes = tf.stack([
        boxes[:, :, 2] - boxes[:, :, 0],
        boxes[:, :, 3] - boxes[:, :, 1],
    ], axis=2)
    object_sizes = tf.reduce_max(input_tensor=object_sizes, axis=2)
    ratios = object_sizes / self._mask_crop_size
    levels = tf.math.ceil(tf.math.log(ratios) / tf.math.log(2.))
    levels = tf.maximum(tf.minimum(levels, self._max_mask_level),
                        self._min_mask_level)
    return levels

  def _classify_and_fuse_detection_priors(self, uniform_priors,
                                          detection_prior_classes,
                                          crop_features):
    """Classify the uniform prior by predicting the shape modes.

    Classify the object crop features into K modes of the clusters for each
    category.

    Args:
      uniform_priors: A float Tensor of shape [batch_size, num_instances,
        mask_size, mask_size] representing the uniform detection priors.
      detection_prior_classes: A int Tensor of shape [batch_size, num_instances]
        of detection class ids.
      crop_features: A float Tensor of shape [batch_size * num_instances,
        mask_size, mask_size, num_channels].

    Returns:
      shape_weights: A float Tensor of shape
        [batch_size * num_instances, num_clusters] representing the classifier
        output probability over all possible shapes.
    """
    location_detection_priors = tf.reshape(
        uniform_priors, [-1, self._mask_crop_size, self._mask_crop_size, 1])
    # Generate image embedding to shape.
    fused_shape_features = crop_features * location_detection_priors

    shape_embedding = tf.reduce_mean(
        input_tensor=fused_shape_features, axis=(1, 2))
    if not self._use_category_for_mask:
      # TODO(weicheng) use custom op for performance
      shape_logits = tf.keras.layers.Dense(
          self._num_clusters,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01))(
              shape_embedding)
      shape_logits = tf.reshape(shape_logits,
                                [-1, self._num_clusters]) / self._temperature
      shape_weights = tf.nn.softmax(shape_logits, name='shape_prior_weights')
    else:
      shape_logits = tf.keras.layers.Dense(
          self._mask_num_classes * self._num_clusters,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01))(
              shape_embedding)
      shape_logits = tf.reshape(
          shape_logits, [-1, self._mask_num_classes, self._num_clusters])
      training_classes = tf.reshape(detection_prior_classes, [-1])
      class_idx = tf.stack(
          [tf.range(tf.size(input=training_classes)), training_classes - 1],
          axis=1)
      shape_logits = tf.gather_nd(shape_logits, class_idx) / self._temperature
      shape_weights = tf.nn.softmax(shape_logits, name='shape_prior_weights')

    return shape_weights

  def _fuse_priors(self, shape_weights, detection_prior_classes):
    """Fuse shape priors by the predicted shape probability.

    Args:
      shape_weights: A float Tensor of shape [batch_size * num_instances,
        num_clusters] of predicted shape probability distribution.
      detection_prior_classes: A int Tensor of shape [batch_size, num_instances]
        of detection class ids.

    Returns:
      detection_priors: A float Tensor of shape [batch_size * num_instances,
        mask_size, mask_size, 1].
    """
    if self._use_category_for_mask:
      object_class_priors = tf.gather(
          self.class_priors, detection_prior_classes)
    else:
      num_batch_instances = shape_weights.get_shape()[0]
      object_class_priors = tf.tile(
          tf.expand_dims(self.class_priors, 0),
          [num_batch_instances, 1, 1, 1])

    vector_class_priors = tf.reshape(
        object_class_priors,
        [-1, self._num_clusters,
         self._mask_crop_size * self._mask_crop_size])
    detection_priors = tf.matmul(
        tf.expand_dims(shape_weights, 1), vector_class_priors)[:, 0, :]
    detection_priors = tf.reshape(
        detection_priors, [-1, self._mask_crop_size, self._mask_crop_size, 1])
    return detection_priors


class ShapemaskCoarsemaskHead(object):
  """ShapemaskCoarsemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               use_category_for_mask,
               num_convs):
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
    """
    self._mask_num_classes = num_classes
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._use_category_for_mask = use_category_for_mask
    self._num_convs = num_convs
    if not use_category_for_mask:
      assert num_classes == 1

  def __call__(self,
               crop_features,
               detection_priors,
               inst_classes,
               is_training=None):
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
      crop_features: a float Tensor of shape [batch_size * num_instances,
        mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
        instance feature crop.
      detection_priors: a float Tensor of shape [batch_size * num_instances,
        mask_crop_size, mask_crop_size, 1]. This is the detection prior for
        the instance.
      inst_classes: a int Tensor of shape [batch_size, num_instances]
        of instance classes.
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
        [batch_size * num_instances, mask_size, mask_size, num_classes].
    """
    # Embed the anchor map into some feature space for anchor conditioning.
    detection_prior_features = tf.keras.layers.Conv2D(
        self._num_downsample_channels,
        kernel_size=(1, 1),
        bias_initializer=tf.zeros_initializer(),
        kernel_initializer=tf.keras.initializers.RandomNormal(
            mean=0., stddev=0.01),
        padding='same',
        name='anchor-conv')(
            detection_priors)

    prior_conditioned_features = crop_features + detection_prior_features
    coarse_output_features = self.coarsemask_decoder_net(
        prior_conditioned_features, is_training)

    coarse_mask_classes = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(
            mean=0, stddev=0.01),
        padding='same',
        name='class-predict')(
            coarse_output_features)

    if self._use_category_for_mask:
      inst_classes = tf.cast(tf.reshape(inst_classes, [-1]), tf.int32)
      coarse_mask_classes_t = tf.transpose(
          a=coarse_mask_classes, perm=(0, 3, 1, 2))
      # pylint: disable=g-long-lambda
      coarse_mask_logits = tf.cond(
          pred=tf.size(input=inst_classes) > 0,
          true_fn=lambda: tf.gather_nd(
              coarse_mask_classes_t,
              tf.stack(
                  [tf.range(tf.size(input=inst_classes)), inst_classes - 1],
                  axis=1)),
          false_fn=lambda: coarse_mask_classes_t[:, 0, :, :])
      # pylint: enable=g-long-lambda
      coarse_mask_logits = tf.expand_dims(coarse_mask_logits, -1)
    else:
      coarse_mask_logits = coarse_mask_classes

    coarse_class_probs = tf.nn.sigmoid(coarse_mask_logits)
    class_probs = tf.cast(coarse_class_probs, prior_conditioned_features.dtype)

    return coarse_mask_classes, class_probs, prior_conditioned_features

  def coarsemask_decoder_net(self,
                             images,
                             is_training=None,
Pengchong Jin's avatar
Pengchong Jin committed
978
                             norm_activation=nn_ops.norm_activation_builder()):
979
980
981
982
983
    """Coarse mask decoder network architecture.

    Args:
      images: A tensor of size [batch, height_in, width_in, channels_in].
      is_training: Whether batch_norm layers are in training mode.
Pengchong Jin's avatar
Pengchong Jin committed
984
      norm_activation: an operation that includes a batch normalization layer
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
        followed by a relu layer(optional).
    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels]
    """
    for i in range(self._num_convs):
      images = tf.keras.layers.Conv2D(
          self._num_downsample_channels,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          activation=None,
          padding='same',
          name='coarse-class-%d' % i)(
              images)
Pengchong Jin's avatar
Pengchong Jin committed
1000
      images = norm_activation(name='coarse-class-%d-bn' % i)(
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
          images, is_training=is_training)

    return images


class ShapemaskFinemaskHead(object):
  """ShapemaskFinemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               num_convs,
               coarse_mask_thr,
               gt_upsample_scale,
Pengchong Jin's avatar
Pengchong Jin committed
1016
               norm_activation=nn_ops.norm_activation_builder()):
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
      coarse_mask_thr: the threshold for suppressing noisy coarse prediction.
      gt_upsample_scale: scale for upsampling groundtruths.
Pengchong Jin's avatar
Pengchong Jin committed
1027
      norm_activation: an operation that includes a batch normalization layer
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
        followed by a relu layer(optional).
    """
    self._mask_num_classes = num_classes
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._num_convs = num_convs
    self._coarse_mask_thr = coarse_mask_thr
    self._gt_upsample_scale = gt_upsample_scale

    self._class_predict_conv = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(
            mean=0, stddev=0.01),
        padding='same',
        name='affinity-class-predict')
    self._upsample_conv = tf.keras.layers.Conv2DTranspose(
        self._num_downsample_channels // 2,
        (self._gt_upsample_scale, self._gt_upsample_scale),
        (self._gt_upsample_scale, self._gt_upsample_scale))
    self._fine_class_conv = []
    self._fine_class_bn = []
    for i in range(self._num_convs):
      self._fine_class_conv.append(
          tf.keras.layers.Conv2D(
              self._num_downsample_channels,
              kernel_size=(3, 3),
              bias_initializer=tf.zeros_initializer(),
              kernel_initializer=tf.keras.initializers.RandomNormal(
                  stddev=0.01),
              activation=None,
              padding='same',
              name='fine-class-%d' % i))
Pengchong Jin's avatar
Pengchong Jin committed
1063
      self._fine_class_bn.append(norm_activation(name='fine-class-%d-bn' % i))
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130

  def __call__(self, prior_conditioned_features, class_probs, is_training=None):
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
      prior_conditioned_features: a float Tensor of shape [batch_size *
        num_instances, mask_crop_size, mask_crop_size, num_downsample_channels].
        This is the instance feature crop.
      class_probs: a float Tensor of shape [batch_size * num_instances,
        mask_crop_size, mask_crop_size, 1]. This is the class probability of
        instance segmentation.
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
        [batch_size * num_instances, mask_size, mask_size, num_classes].
    """
    with backend.get_graph().as_default(), tf.name_scope('affinity-masknet'):
      # Extract the foreground mean features
      point_samp_prob_thr = 1. / (1. + tf.exp(-self._coarse_mask_thr))
      point_samp_prob_thr = tf.cast(point_samp_prob_thr, class_probs.dtype)
      class_probs = tf.where(
          tf.greater(class_probs, point_samp_prob_thr), class_probs,
          tf.zeros_like(class_probs))
      weighted_features = class_probs * prior_conditioned_features
      sum_class_vector = tf.reduce_sum(
          input_tensor=class_probs, axis=(1, 2)) + tf.constant(
              1e-20, class_probs.dtype)
      instance_embedding = tf.reduce_sum(
          input_tensor=weighted_features, axis=(1, 2)) / sum_class_vector

      # Take the difference between crop features and mean instance features.
      instance_features = prior_conditioned_features - tf.reshape(
          instance_embedding, (-1, 1, 1, self._num_downsample_channels))

      # Decoder to generate upsampled segmentation mask.
      affinity_output_features = self.finemask_decoder_net(
          instance_features, is_training)

      # Predict per-class instance masks.
      affinity_mask_classes = self._class_predict_conv(affinity_output_features)

      return affinity_mask_classes

  def finemask_decoder_net(self, images, is_training=None):
    """Fine mask decoder network architecture.

    Args:
      images: A tensor of size [batch, height_in, width_in, channels_in].
      is_training: Whether batch_norm layers are in training mode.

    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels], where output size is self._gt_upsample_scale times
        that of input.
    """
    for i in range(self._num_convs):
      images = self._fine_class_conv[i](images)
      images = self._fine_class_bn[i](images, is_training=is_training)

    if self._gt_upsample_scale > 1:
      images = self._upsample_conv(images)

    return images