"examples/run_cli_530B.sh" did not exist on "59414b332eccf5caa4af50d65fe9ed7a88a4a5c6"
ncf_common.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Common functionalities used by both Keras and Estimator implementations.
16
"""
17

18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

22
import json
23
24
import os

25
# pylint: disable=g-bad-import-order
26
import numpy as np
27
from absl import flags
28
from absl import logging
29
import tensorflow as tf
30
# pylint: enable=g-bad-import-order
31

32
from official.recommendation import constants as rconst
33
from official.recommendation import data_pipeline
34
from official.recommendation import data_preprocessing
35
from official.recommendation import movielens
36
from official.utils.flags import core as flags_core
37
from official.utils.misc import distribution_utils
38
from official.utils.misc import keras_utils
39

Reed's avatar
Reed committed
40
41
42
FLAGS = flags.FLAGS


Shining Sun's avatar
Shining Sun committed
43
44
45
46
def get_inputs(params):
  """Returns some parameters used by the model."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
47

Shining Sun's avatar
Shining Sun committed
48
49
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)
50

Shining Sun's avatar
Shining Sun committed
51
52
  if FLAGS.use_synthetic_data:
    producer = data_pipeline.DummyConstructor()
53
    num_users, num_items = movielens.DATASET_TO_NUM_USERS_AND_ITEMS[
Shining Sun's avatar
Shining Sun committed
54
55
56
        FLAGS.dataset]
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
57
  else:
Shining Sun's avatar
Shining Sun committed
58
59
60
61
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, params=params,
        constructor_type=FLAGS.constructor_type,
        deterministic=FLAGS.seed is not None)
62
63
    num_train_steps = producer.train_batches_per_epoch
    num_eval_steps = producer.eval_batches_per_epoch
64

Shining Sun's avatar
Shining Sun committed
65
  return num_users, num_items, num_train_steps, num_eval_steps, producer
66
67
68


def parse_flags(flags_obj):
Taylor Robie's avatar
Taylor Robie committed
69
  """Convenience function to turn flags into params."""
70
71
  num_gpus = flags_core.get_num_gpus(flags_obj)

72
  batch_size = flags_obj.batch_size
Taylor Robie's avatar
Taylor Robie committed
73
  eval_batch_size = flags_obj.eval_batch_size or flags_obj.batch_size
74
75
76

  return {
      "train_epochs": flags_obj.train_epochs,
77
      "batches_per_step": 1,
78
79
80
81
82
83
84
85
86
      "use_seed": flags_obj.seed is not None,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": flags_obj.learning_rate,
      "mf_dim": flags_obj.num_factors,
      "model_layers": [int(layer) for layer in flags_obj.layers],
      "mf_regularization": flags_obj.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in flags_obj.mlp_regularization],
      "num_neg": flags_obj.num_neg,
87
      "distribution_strategy": flags_obj.distribution_strategy,
88
89
90
91
92
93
94
95
96
      "num_gpus": num_gpus,
      "use_tpu": flags_obj.tpu is not None,
      "tpu": flags_obj.tpu,
      "tpu_zone": flags_obj.tpu_zone,
      "tpu_gcp_project": flags_obj.tpu_gcp_project,
      "beta1": flags_obj.beta1,
      "beta2": flags_obj.beta2,
      "epsilon": flags_obj.epsilon,
      "match_mlperf": flags_obj.ml_perf,
Yuefeng Zhou's avatar
Yuefeng Zhou committed
97
      "epochs_between_evals": flags_obj.epochs_between_evals,
98
      "keras_use_ctl": flags_obj.keras_use_ctl,
99
      "hr_threshold": flags_obj.hr_threshold,
100
      "stream_files": flags_obj.tpu is not None,
101
102
103
      "train_dataset_path": flags_obj.train_dataset_path,
      "eval_dataset_path": flags_obj.eval_dataset_path,
      "input_meta_data_path": flags_obj.input_meta_data_path,
104
  }
105
106


107
def get_v1_distribution_strategy(params):
Shining Sun's avatar
Shining Sun committed
108
109
110
111
112
113
  """Returns the distribution strategy to use."""
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
    for name in ["googleapiclient.discovery", "googleapiclient.discovery_cache",
                 "oauth2client.transport"]:
      logging.getLogger(name).setLevel(logging.ERROR)
114

115
    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
Shining Sun's avatar
Shining Sun committed
116
117
118
119
120
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
        coordinator_name="coordinator"
    )
121

122
    logging.info("Issuing reset command to TPU to ensure a clean state.")
Shining Sun's avatar
Shining Sun committed
123
    tf.Session.reset(tpu_cluster_resolver.get_master())
124

Shining Sun's avatar
Shining Sun committed
125
126
127
128
129
130
131
132
133
    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
        "session_master": tpu_cluster_resolver.get_master(),
        "eval_session_master": tpu_cluster_resolver.get_master(),
        "coordinator": tpu_cluster_resolver.cluster_spec()
                       .as_dict()["coordinator"]
    }
Haoyu Zhang's avatar
Haoyu Zhang committed
134
    os.environ["TF_CONFIG"] = json.dumps(tf_config_env)
135

136
    distribution = tf.distribute.experimental.TPUStrategy(
Shining Sun's avatar
Shining Sun committed
137
        tpu_cluster_resolver, steps_per_run=100)
138

Shining Sun's avatar
Shining Sun committed
139
140
141
  else:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=params["num_gpus"])
142

Shining Sun's avatar
Shining Sun committed
143
  return distribution
144

145
146
147
148

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
  flags_core.define_base(model_dir=True, clean=True, train_epochs=True,
150
                         epochs_between_evals=True, export_dir=False,
151
                         run_eagerly=True, stop_threshold=True, num_gpu=True,
Hongkun Yu's avatar
Hongkun Yu committed
152
                         distribution_strategy=True)
153
  flags_core.define_performance(
154
      synthetic_data=True,
Nimit Nigania's avatar
Nimit Nigania committed
155
      dtype=True,
156
      fp16_implementation=True,
Nimit Nigania's avatar
Nimit Nigania committed
157
158
      loss_scale=True,
      dynamic_loss_scale=True,
159
      enable_xla=True,
160
  )
161
  flags_core.define_device(tpu=True)
162
163
164
165
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

166
167
  movielens.define_flags()

168
169
170
  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
171
      dataset=movielens.ML_1M,
172
      train_epochs=2,
173
      batch_size=99000,
174
175
      tpu=None
  )
176
177

  # Add ncf-specific flags
178
179
180
181
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

182
  flags.DEFINE_integer(
183
184
185
186
187
188
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

222
223
224
225
226
227
228
229
230
231
232
233
234
  flags.DEFINE_float(
      name="beta1", default=0.9,
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="beta2", default=0.999,
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="epsilon", default=1e-8,
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

235
  flags.DEFINE_float(
236
      name="hr_threshold", default=1.0,
237
238
239
240
241
242
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
243

244
245
246
247
248
249
250
251
  flags.DEFINE_enum(
      name="constructor_type", default="bisection",
      enum_values=["bisection", "materialized"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Strategy to use for generating false negatives. materialized has a"
          "precompute that scales badly, but a faster per-epoch construction"
          "time and can be faster on very large systems."))

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
  flags.DEFINE_string(
      name="train_dataset_path",
      default=None,
      help=flags_core.help_wrap("Path to training data."))

  flags.DEFINE_string(
      name="eval_dataset_path",
      default=None,
      help=flags_core.help_wrap("Path to evaluation data."))

  flags.DEFINE_string(
      name="input_meta_data_path",
      default=None,
      help=flags_core.help_wrap("Path to input meta data file."))

267
  flags.DEFINE_bool(
268
      name="ml_perf", default=False,
269
270
271
272
273
274
275
276
277
278
279
280
281
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

Reed's avatar
Reed committed
282
283
284
285
286
287
288
289
290
291
292
293
  flags.DEFINE_bool(
      name="output_ml_perf_compliance_logging", default=False,
      help=flags_core.help_wrap(
          "If set, output the MLPerf compliance logging. This is only useful "
          "if one is running the model for MLPerf. See "
          "https://github.com/mlperf/policies/blob/master/training_rules.adoc"
          "#submission-compliance-logs for details. This uses sudo and so may "
          "ask for your password, as root access is needed to clear the system "
          "caches, which is required for MLPerf compliance."
      )
  )

294
295
296
297
  flags.DEFINE_integer(
      name="seed", default=None, help=flags_core.help_wrap(
          "This value will be used to seed both NumPy and TensorFlow."))

298
299
300
  @flags.validator("eval_batch_size", "eval_batch_size must be at least {}"
                   .format(rconst.NUM_EVAL_NEGATIVES + 1))
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
301
302
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
303

304
305
306
307
  flags.DEFINE_bool(
      name="early_stopping",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
308
          "If True, we stop the training when it reaches hr_threshold"))
309

310
311
312
313
  flags.DEFINE_bool(
      name="keras_use_ctl",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
314
          "If True, we use a custom training loop for keras."))
315

Haoyu Zhang's avatar
Haoyu Zhang committed
316

Shining Sun's avatar
Shining Sun committed
317
def convert_to_softmax_logits(logits):
318
  """Convert the logits returned by the base model to softmax logits.
Shining Sun's avatar
Shining Sun committed
319

320
321
322
323
324
325
  Args:
    logits: used to create softmax.

  Returns:
    Softmax with the first column of zeros is equivalent to sigmoid.
  """
Shining Sun's avatar
Shining Sun committed
326
327
  softmax_logits = tf.concat([logits * 0, logits], axis=1)
  return softmax_logits