run_classifier.py 17.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""BERT classification or regression finetuning runner in TF 2.x."""
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import functools
21
22
import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
import os
24
25
26
27

from absl import app
from absl import flags
from absl import logging
Le Hou's avatar
Le Hou committed
28
import gin
29
import tensorflow as tf
30
from official.modeling import performance
31
from official.nlp import optimization
32
from official.nlp.bert import bert_models
33
from official.nlp.bert import common_flags
34
from official.nlp.bert import configs as bert_configs
35
36
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
37
from official.utils.misc import distribution_utils
38
from official.utils.misc import keras_utils
39
40

flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
41
42
    'mode', 'train_and_eval', ['train_and_eval', 'export_only', 'predict'],
    'One of {"train_and_eval", "export_only", "predict"}. `train_and_eval`: '
43
44
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
Hongkun Yu's avatar
Hongkun Yu committed
45
46
    'model_dir and export a `SavedModel`. `predict`: takes a checkpoint and '
    'restores the model to output predictions on the test set.')
47
48
49
50
51
52
53
54
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
Hongkun Yu's avatar
Hongkun Yu committed
55
56
flags.DEFINE_string('predict_checkpoint_path', None,
                    'Path to the checkpoint for predictions.')
Tianqi Liu's avatar
Tianqi Liu committed
57
58
59
60
61
62
flags.DEFINE_integer(
    'num_eval_per_epoch', 1,
    'Number of evaluations per epoch. The purpose of this flag is to provide '
    'more granular evaluation scores and checkpoints. For example, if original '
    'data has N samples and num_eval_per_epoch is n, then each epoch will be '
    'evaluated every N/n samples.')
63
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
64
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
65
66

common_flags.define_common_bert_flags()
67
68
69

FLAGS = flags.FLAGS

70
71
LABEL_TYPES_MAP = {'int': tf.int64, 'float': tf.float32}

72

73
def get_loss_fn(num_classes):
74
75
76
77
78
79
80
81
82
83
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
84
    return tf.reduce_mean(per_example_loss)
85
86
87
88

  return classification_loss_fn


Tianqi Liu's avatar
Tianqi Liu committed
89
90
91
92
def get_dataset_fn(input_file_pattern,
                   max_seq_length,
                   global_batch_size,
                   is_training,
93
94
                   label_type=tf.int64,
                   include_sample_weights=False):
Hongkun Yu's avatar
Hongkun Yu committed
95
96
97
98
99
100
101
  """Gets a closure to create a dataset."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_classifier_dataset(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
102
        tf.io.gfile.glob(input_file_pattern),
Hongkun Yu's avatar
Hongkun Yu committed
103
104
105
        max_seq_length,
        batch_size,
        is_training=is_training,
106
        input_pipeline_context=ctx,
107
108
        label_type=label_type,
        include_sample_weights=include_sample_weights)
Hongkun Yu's avatar
Hongkun Yu committed
109
110
111
112
113
    return dataset

  return _dataset_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
115
116
117
118
119
120
121
122
123
124
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
125
126
                        train_input_fn,
                        eval_input_fn,
127
                        training_callbacks=True,
128
129
                        custom_callbacks=None,
                        custom_metrics=None):
130
131
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
132
133
  num_classes = input_meta_data.get('num_labels', 1)
  is_regression = num_classes == 1
134
135

  def _get_classifier_model():
136
    """Gets a classifier model."""
137
    classifier_model, core_model = (
138
139
140
141
        bert_models.classifier_model(
            bert_config,
            num_classes,
            max_seq_length,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
142
143
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable))
Hongkun Yu's avatar
Hongkun Yu committed
144
145
146
147
    optimizer = optimization.create_optimizer(initial_lr,
                                              steps_per_epoch * epochs,
                                              warmup_steps, FLAGS.end_lr,
                                              FLAGS.optimizer_type)
148
149
150
151
    classifier_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
152
153
    return classifier_model, core_model

154
155
156
157
158
159
  # tf.keras.losses objects accept optional sample_weight arguments (eg. coming
  # from the dataset) to compute weighted loss, as used for the regression
  # tasks. The classification tasks, using the custom get_loss_fn don't accept
  # sample weights though.
  loss_fn = (tf.keras.losses.MeanSquaredError() if is_regression
             else get_loss_fn(num_classes))
160
161
162

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
163
164
165
  if custom_metrics:
    metric_fn = custom_metrics
  elif is_regression:
Tianqi Liu's avatar
Tianqi Liu committed
166
167
168
169
    metric_fn = functools.partial(
        tf.keras.metrics.MeanSquaredError,
        'mean_squared_error',
        dtype=tf.float32)
170
  else:
Tianqi Liu's avatar
Tianqi Liu committed
171
172
173
174
    metric_fn = functools.partial(
        tf.keras.metrics.SparseCategoricalAccuracy,
        'accuracy',
        dtype=tf.float32)
175
176
177

  # Start training using Keras compile/fit API.
  logging.info('Training using TF 2.x Keras compile/fit API with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
178
               'distribution strategy.')
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
  return run_keras_compile_fit(
      model_dir,
      strategy,
      _get_classifier_model,
      train_input_fn,
      eval_input_fn,
      loss_fn,
      metric_fn,
      init_checkpoint,
      epochs,
      steps_per_epoch,
      steps_per_loop,
      eval_steps,
      training_callbacks=training_callbacks,
      custom_callbacks=custom_callbacks)
194
195


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
196
197
198
199
200
201
202
203
204
205
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
Hongkun Yu's avatar
Hongkun Yu committed
206
                          steps_per_loop,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
207
                          eval_steps,
208
                          training_callbacks=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
209
210
211
212
213
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
Le Hou's avatar
Le Hou committed
214
    evaluation_dataset = eval_input_fn() if eval_input_fn else None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
215
216
217
218
219
220
221
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

222
223
    if not isinstance(metric_fn, (list, tuple)):
      metric_fn = [metric_fn]
Hongkun Yu's avatar
Hongkun Yu committed
224
225
226
    bert_model.compile(
        optimizer=optimizer,
        loss=loss_fn,
227
        metrics=[fn() for fn in metric_fn],
Hongkun Yu's avatar
Hongkun Yu committed
228
        experimental_steps_per_execution=steps_per_loop)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
229

230
231
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
Hongkun Yu's avatar
Hongkun Yu committed
232
233
234
235
236
237
238
239
    checkpoint = tf.train.Checkpoint(model=bert_model, optimizer=optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        directory=model_dir,
        max_to_keep=None,
        step_counter=optimizer.iterations,
        checkpoint_interval=0)
    checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
240

241
242
243
244
245
    if training_callbacks:
      if custom_callbacks is not None:
        custom_callbacks += [summary_callback, checkpoint_callback]
      else:
        custom_callbacks = [summary_callback, checkpoint_callback]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
246

247
    history = bert_model.fit(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
248
249
250
251
252
253
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)
254
255
256
257
258
259
    stats = {'total_training_steps': steps_per_epoch * epochs}
    if 'loss' in history.history:
      stats['train_loss'] = history.history['loss'][-1]
    if 'val_accuracy' in history.history:
      stats['eval_metrics'] = history.history['val_accuracy'][-1]
    return bert_model, stats
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
260
261


Hongkun Yu's avatar
Hongkun Yu committed
262
263
264
265
def get_predictions_and_labels(strategy,
                               trained_model,
                               eval_input_fn,
                               return_probs=False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
266
267
268
269
270
271
272
273
274
  """Obtains predictions of trained model on evaluation data.

  Note that list of labels is returned along with the predictions because the
  order changes on distributing dataset over TPU pods.

  Args:
    strategy: Distribution strategy.
    trained_model: Trained model with preloaded weights.
    eval_input_fn: Input function for evaluation data.
Hongkun Yu's avatar
Hongkun Yu committed
275
    return_probs: Whether to return probabilities of classes.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
276
277
278
279
280
281
282
283
284
285
286
287
288

  Returns:
    predictions: List of predictions.
    labels: List of gold labels corresponding to predictions.
  """

  @tf.function
  def test_step(iterator):
    """Computes predictions on distributed devices."""

    def _test_step_fn(inputs):
      """Replicated predictions."""
      inputs, labels = inputs
Hongkun Yu's avatar
Hongkun Yu committed
289
290
291
      logits = trained_model(inputs, training=False)
      probabilities = tf.nn.softmax(logits)
      return probabilities, labels
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
292

Hongkun Yu's avatar
Hongkun Yu committed
293
    outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
294
295
296
297
298
299
300
301
302
    # outputs: current batch logits as a tuple of shard logits
    outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                    outputs)
    labels = tf.nest.map_structure(strategy.experimental_local_results, labels)
    return outputs, labels

  def _run_evaluation(test_iterator):
    """Runs evaluation steps."""
    preds, golds = list(), list()
Hongkun Yu's avatar
Hongkun Yu committed
303
304
305
306
307
308
309
310
311
312
313
314
    try:
      with tf.experimental.async_scope():
        while True:
          probabilities, labels = test_step(test_iterator)
          for cur_probs, cur_labels in zip(probabilities, labels):
            if return_probs:
              preds.extend(cur_probs.numpy().tolist())
            else:
              preds.extend(tf.math.argmax(cur_probs, axis=1).numpy())
            golds.extend(cur_labels.numpy().tolist())
    except (StopIteration, tf.errors.OutOfRangeError):
      tf.experimental.async_clear_error()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
315
316
317
318
319
320
321
322
323
    return preds, golds

  test_iter = iter(
      strategy.experimental_distribute_datasets_from_function(eval_input_fn))
  predictions, labels = _run_evaluation(test_iter)

  return predictions, labels


Hongkun Yu's avatar
Hongkun Yu committed
324
325
def export_classifier(model_export_path, input_meta_data, bert_config,
                      model_dir):
326
327
328
329
330
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
331
332
333
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.
334
335
336
337
338
339

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
340
341
  if not model_dir:
    raise ValueError('Export path is not specified: %s' % model_dir)
342

Zongwei Zhou's avatar
Zongwei Zhou committed
343
344
  # Export uses float32 for now, even if training uses mixed precision.
  tf.keras.mixed_precision.experimental.set_policy('float32')
345
  classifier_model = bert_models.classifier_model(
346
347
348
349
      bert_config,
      input_meta_data.get('num_labels', 1),
      hub_module_url=FLAGS.hub_module_url,
      hub_module_trainable=False)[0]
350

351
  model_saving_utils.export_bert_model(
Hongkun Yu's avatar
Hongkun Yu committed
352
      model_export_path, model=classifier_model, checkpoint_dir=model_dir)
353
354


Hongkun Yu's avatar
Hongkun Yu committed
355
356
def run_bert(strategy,
             input_meta_data,
357
             model_config,
Hongkun Yu's avatar
Hongkun Yu committed
358
             train_input_fn=None,
Le Hou's avatar
Le Hou committed
359
             eval_input_fn=None,
360
             init_checkpoint=None,
361
362
             custom_callbacks=None,
             custom_metrics=None):
363
  """Run BERT training."""
364
  # Enables XLA in Session Config. Should not be set for TPU.
365
  keras_utils.set_session_config(FLAGS.enable_xla)
366
  performance.set_mixed_precision_policy(common_flags.dtype())
367

Tianqi Liu's avatar
Tianqi Liu committed
368
369
370
  epochs = FLAGS.num_train_epochs * FLAGS.num_eval_per_epoch
  train_data_size = (
      input_meta_data['train_data_size'] // FLAGS.num_eval_per_epoch)
371
372
373
374
375
376
377
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
378

379
380
381
  if not custom_callbacks:
    custom_callbacks = []

382
  if FLAGS.log_steps:
Hongkun Yu's avatar
Hongkun Yu committed
383
384
385
386
387
    custom_callbacks.append(
        keras_utils.TimeHistory(
            batch_size=FLAGS.train_batch_size,
            log_steps=FLAGS.log_steps,
            logdir=FLAGS.model_dir))
388

389
  trained_model, _ = run_bert_classifier(
390
      strategy,
391
      model_config,
392
393
394
395
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
396
      FLAGS.steps_per_loop,
397
398
399
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
Le Hou's avatar
Le Hou committed
400
      init_checkpoint or FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
401
402
      train_input_fn,
      eval_input_fn,
403
404
      custom_callbacks=custom_callbacks,
      custom_metrics=custom_metrics)
405

406
  if FLAGS.model_export_path:
407
    model_saving_utils.export_bert_model(
Hongkun Yu's avatar
Hongkun Yu committed
408
        FLAGS.model_export_path, model=trained_model)
409
410
  return trained_model

411

412
def custom_main(custom_callbacks=None, custom_metrics=None):
413
  """Run classification or regression.
414

415
416
  Args:
    custom_callbacks: list of tf.keras.Callbacks passed to training loop.
417
    custom_metrics: list of metrics passed to the training loop.
418
  """
Le Hou's avatar
Le Hou committed
419
420
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)

421
422
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))
423
  label_type = LABEL_TYPES_MAP[input_meta_data.get('label_type', 'int')]
424
  include_sample_weights = input_meta_data.get('has_sample_weights', False)
425
426
427
428

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

Hongkun Yu's avatar
Hongkun Yu committed
429
430
431
432
433
434
435
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)

  if FLAGS.mode == 'export_only':
    export_classifier(FLAGS.model_export_path, input_meta_data, bert_config,
                      FLAGS.model_dir)
    return

436
437
438
439
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
Hongkun Yu's avatar
Hongkun Yu committed
440
  eval_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
441
      FLAGS.eval_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
442
      input_meta_data['max_seq_length'],
Hongkun Yu's avatar
Hongkun Yu committed
443
      FLAGS.eval_batch_size,
444
      is_training=False,
445
446
      label_type=label_type,
      include_sample_weights=include_sample_weights)
Hongkun Yu's avatar
Hongkun Yu committed
447

Hongkun Yu's avatar
Hongkun Yu committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
  if FLAGS.mode == 'predict':
    with strategy.scope():
      classifier_model = bert_models.classifier_model(
          bert_config, input_meta_data['num_labels'])[0]
      checkpoint = tf.train.Checkpoint(model=classifier_model)
      latest_checkpoint_file = (
          FLAGS.predict_checkpoint_path or
          tf.train.latest_checkpoint(FLAGS.model_dir))
      assert latest_checkpoint_file
      logging.info('Checkpoint file %s found and restoring from '
                   'checkpoint', latest_checkpoint_file)
      checkpoint.restore(
          latest_checkpoint_file).assert_existing_objects_matched()
      preds, _ = get_predictions_and_labels(
          strategy, classifier_model, eval_input_fn, return_probs=True)
    output_predict_file = os.path.join(FLAGS.model_dir, 'test_results.tsv')
    with tf.io.gfile.GFile(output_predict_file, 'w') as writer:
      logging.info('***** Predict results *****')
      for probabilities in preds:
        output_line = '\t'.join(
            str(class_probability)
            for class_probability in probabilities) + '\n'
        writer.write(output_line)
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
  train_input_fn = get_dataset_fn(
      FLAGS.train_data_path,
      input_meta_data['max_seq_length'],
      FLAGS.train_batch_size,
479
      is_training=True,
480
481
      label_type=label_type,
      include_sample_weights=include_sample_weights)
Hongkun Yu's avatar
Hongkun Yu committed
482
483
484
485
486
487
  run_bert(
      strategy,
      input_meta_data,
      bert_config,
      train_input_fn,
      eval_input_fn,
488
489
      custom_callbacks=custom_callbacks,
      custom_metrics=custom_metrics)
490
491
492


def main(_):
493
  custom_main(custom_callbacks=None, custom_metrics=None)
494
495
496
497
498


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
499
  flags.mark_flag_as_required('model_dir')
500
  app.run(main)