"official/projects/mosaic/train.py" did not exist on "9c3deec8797a08222a18382d7f76365acc19446f"
logger.py 15.3 KB
Newer Older
Scott Zhu's avatar
Scott Zhu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

16
17
18
"""Logging utilities for benchmark.

For collecting local environment metrics like CPU and memory, certain python
19
packages need be installed. See README for details.
20
"""
Scott Zhu's avatar
Scott Zhu committed
21
22
23
24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import contextlib
Scott Zhu's avatar
Scott Zhu committed
26
27
import datetime
import json
28
import multiprocessing
Scott Zhu's avatar
Scott Zhu committed
29
30
import numbers
import os
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
31
import threading
32
import uuid
Scott Zhu's avatar
Scott Zhu committed
33

34
35
from six.moves import _thread as thread
from absl import flags
Scott Zhu's avatar
Scott Zhu committed
36
import tensorflow as tf
37
from tensorflow.python.client import device_lib
38
from absl import logging
Scott Zhu's avatar
Scott Zhu committed
39

40
41
from official.utils.logs import cloud_lib

42
43
METRIC_LOG_FILE_NAME = "metric.log"
BENCHMARK_RUN_LOG_FILE_NAME = "benchmark_run.log"
Scott Zhu's avatar
Scott Zhu committed
44
_DATE_TIME_FORMAT_PATTERN = "%Y-%m-%dT%H:%M:%S.%fZ"
45
GCP_TEST_ENV = "GCP"
46
47
48
RUN_STATUS_SUCCESS = "success"
RUN_STATUS_FAILURE = "failure"
RUN_STATUS_RUNNING = "running"
Scott Zhu's avatar
Scott Zhu committed
49

50

51
FLAGS = flags.FLAGS
Scott Zhu's avatar
Scott Zhu committed
52

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
53
54
55
# Don't use it directly. Use get_benchmark_logger to access a logger.
_benchmark_logger = None
_logger_lock = threading.Lock()
Scott Zhu's avatar
Scott Zhu committed
56
57


58
def config_benchmark_logger(flag_obj=None):
Karmel Allison's avatar
Karmel Allison committed
59
  """Config the global benchmark logger."""
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
60
61
62
  _logger_lock.acquire()
  try:
    global _benchmark_logger
63
64
65
    if not flag_obj:
      flag_obj = FLAGS

Karmel Allison's avatar
Karmel Allison committed
66
67
    if (not hasattr(flag_obj, "benchmark_logger_type") or
        flag_obj.benchmark_logger_type == "BaseBenchmarkLogger"):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
68
      _benchmark_logger = BaseBenchmarkLogger()
Karmel Allison's avatar
Karmel Allison committed
69
    elif flag_obj.benchmark_logger_type == "BenchmarkFileLogger":
70
      _benchmark_logger = BenchmarkFileLogger(flag_obj.benchmark_log_dir)
Karmel Allison's avatar
Karmel Allison committed
71
72
    elif flag_obj.benchmark_logger_type == "BenchmarkBigQueryLogger":
      from official.benchmark import benchmark_uploader as bu  # pylint: disable=g-import-not-at-top
73
74
75
76
77
      bq_uploader = bu.BigQueryUploader(gcp_project=flag_obj.gcp_project)
      _benchmark_logger = BenchmarkBigQueryLogger(
          bigquery_uploader=bq_uploader,
          bigquery_data_set=flag_obj.bigquery_data_set,
          bigquery_run_table=flag_obj.bigquery_run_table,
78
          bigquery_run_status_table=flag_obj.bigquery_run_status_table,
79
80
81
          bigquery_metric_table=flag_obj.bigquery_metric_table,
          run_id=str(uuid.uuid4()))
    else:
Karmel Allison's avatar
Karmel Allison committed
82
83
      raise ValueError("Unrecognized benchmark_logger_type: %s"
                       % flag_obj.benchmark_logger_type)
84

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
85
86
87
88
89
90
91
  finally:
    _logger_lock.release()
  return _benchmark_logger


def get_benchmark_logger():
  if not _benchmark_logger:
92
    config_benchmark_logger()
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
93
94
95
  return _benchmark_logger


96
97
98
99
100
101
102
103
104
105
106
107
108
@contextlib.contextmanager
def benchmark_context(flag_obj):
  """Context of benchmark, which will update status of the run accordingly."""
  benchmark_logger = config_benchmark_logger(flag_obj)
  try:
    yield
    benchmark_logger.on_finish(RUN_STATUS_SUCCESS)
  except Exception:  # pylint: disable=broad-except
    # Catch all the exception, update the run status to be failure, and re-raise
    benchmark_logger.on_finish(RUN_STATUS_FAILURE)
    raise


Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
109
110
111
112
113
class BaseBenchmarkLogger(object):
  """Class to log the benchmark information to STDOUT."""

  def log_evaluation_result(self, eval_results):
    """Log the evaluation result.
114

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
115
    The evaluate result is a dictionary that contains metrics defined in
116
117
118
119
    model_fn. It also contains a entry for global_step which contains the value
    of the global step when evaluation was performed.

    Args:
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
120
      eval_results: dict, the result of evaluate.
121
122
    """
    if not isinstance(eval_results, dict):
123
      logging.warning(
124
125
          "eval_results should be dictionary for logging. Got %s",
          type(eval_results))
126
      return
127
    global_step = eval_results[tf.compat.v1.GraphKeys.GLOBAL_STEP]
128
    for key in sorted(eval_results):
129
      if key != tf.compat.v1.GraphKeys.GLOBAL_STEP:
130
131
        self.log_metric(key, eval_results[key], global_step=global_step)

Scott Zhu's avatar
Scott Zhu committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
146
147
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
148
      logging.info("Benchmark metric: %s", metric)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
149

150
  def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
151
    logging.info(
152
153
        "Benchmark run: %s", _gather_run_info(model_name, dataset_name,
                                              run_params, test_id))
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
154

155
156
157
  def on_finish(self, status):
    pass

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
158
159
160
161
162
163
164

class BenchmarkFileLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to local disk."""

  def __init__(self, logging_dir):
    super(BenchmarkFileLogger, self).__init__()
    self._logging_dir = logging_dir
165
166
167
    if not tf.io.gfile.isdir(self._logging_dir):
      tf.io.gfile.makedirs(self._logging_dir)
    self._metric_file_handler = tf.io.gfile.GFile(
168
        os.path.join(self._logging_dir, METRIC_LOG_FILE_NAME), "a")
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
184
185
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
186
187
188
189
190
      try:
        json.dump(metric, self._metric_file_handler)
        self._metric_file_handler.write("\n")
        self._metric_file_handler.flush()
      except (TypeError, ValueError) as e:
191
        logging.warning(
192
193
            "Failed to dump metric to log file: name %s, value %s, error %s",
            name, value, e)
194

195
  def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
196
197
198
199
200
201
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
202
203
204
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
205
206
      test_id: string, the unique name of the test run by the combination of key
        parameters, eg batch size, num of GPU. It is hardware independent.
207
    """
208
    run_info = _gather_run_info(model_name, dataset_name, run_params, test_id)
209

210
    with tf.io.gfile.GFile(os.path.join(
211
        self._logging_dir, BENCHMARK_RUN_LOG_FILE_NAME), "w") as f:
212
213
214
215
      try:
        json.dump(run_info, f)
        f.write("\n")
      except (TypeError, ValueError) as e:
216
        logging.warning(
217
            "Failed to dump benchmark run info to log file: %s", e)
218

219
  def on_finish(self, status):
220
221
    self._metric_file_handler.flush()
    self._metric_file_handler.close()
222

223

224
225
226
227
228
229
230
class BenchmarkBigQueryLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to BigQuery data store."""

  def __init__(self,
               bigquery_uploader,
               bigquery_data_set,
               bigquery_run_table,
231
               bigquery_run_status_table,
232
233
234
235
236
237
               bigquery_metric_table,
               run_id):
    super(BenchmarkBigQueryLogger, self).__init__()
    self._bigquery_uploader = bigquery_uploader
    self._bigquery_data_set = bigquery_data_set
    self._bigquery_run_table = bigquery_run_table
238
    self._bigquery_run_status_table = bigquery_run_status_table
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    self._bigquery_metric_table = bigquery_metric_table
    self._run_id = run_id

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to bigquery.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      # Starting new thread for bigquery upload in case it might take long time
      # and impact the benchmark and performance measurement. Starting a new
      # thread might have potential performance impact for model that run on
      # CPU.
      thread.start_new_thread(
          self._bigquery_uploader.upload_benchmark_metric_json,
          (self._bigquery_data_set,
           self._bigquery_metric_table,
           self._run_id,
           [metric]))

266
  def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
267
268
269
270
271
272
273
274
275
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
276
277
      test_id: string, the unique name of the test run by the combination of key
        parameters, eg batch size, num of GPU. It is hardware independent.
278
    """
279
    run_info = _gather_run_info(model_name, dataset_name, run_params, test_id)
280
281
282
283
284
285
286
287
288
    # Starting new thread for bigquery upload in case it might take long time
    # and impact the benchmark and performance measurement. Starting a new
    # thread might have potential performance impact for model that run on CPU.
    thread.start_new_thread(
        self._bigquery_uploader.upload_benchmark_run_json,
        (self._bigquery_data_set,
         self._bigquery_run_table,
         self._run_id,
         run_info))
289
290
291
292
293
294
295
296
    thread.start_new_thread(
        self._bigquery_uploader.insert_run_status,
        (self._bigquery_data_set,
         self._bigquery_run_status_table,
         self._run_id,
         RUN_STATUS_RUNNING))

  def on_finish(self, status):
297
298
299
300
301
    self._bigquery_uploader.update_run_status(
        self._bigquery_data_set,
        self._bigquery_run_status_table,
        self._run_id,
        status)
302

Karmel Allison's avatar
Karmel Allison committed
303

304
def _gather_run_info(model_name, dataset_name, run_params, test_id):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
305
306
307
  """Collect the benchmark run information for the local environment."""
  run_info = {
      "model_name": model_name,
308
      "dataset": {"name": dataset_name},
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
309
      "machine_config": {},
310
      "test_id": test_id,
311
312
      "run_date": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN)}
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
313
314
  _collect_tensorflow_info(run_info)
  _collect_tensorflow_environment_variables(run_info)
315
  _collect_run_params(run_info, run_params)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
316
317
  _collect_cpu_info(run_info)
  _collect_memory_info(run_info)
318
  _collect_test_environment(run_info)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
319
320
321
  return run_info


322
323
324
325
def _process_metric_to_json(
    name, value, unit=None, global_step=None, extras=None):
  """Validate the metric data and generate JSON for insert."""
  if not isinstance(value, numbers.Number):
326
    logging.warning(
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        "Metric value to log should be a number. Got %s", type(value))
    return None

  extras = _convert_to_json_dict(extras)
  return {
      "name": name,
      "value": float(value),
      "unit": unit,
      "global_step": global_step,
      "timestamp": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN),
      "extras": extras}


341
342
def _collect_tensorflow_info(run_info):
  run_info["tensorflow_version"] = {
343
      "version": tf.version.VERSION, "git_hash": tf.version.GIT_VERSION}
344
345


346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def _collect_run_params(run_info, run_params):
  """Log the parameter information for the benchmark run."""
  def process_param(name, value):
    type_check = {
        str: {"name": name, "string_value": value},
        int: {"name": name, "long_value": value},
        bool: {"name": name, "bool_value": str(value)},
        float: {"name": name, "float_value": value},
    }
    return type_check.get(type(value),
                          {"name": name, "string_value": str(value)})
  if run_params:
    run_info["run_parameters"] = [
        process_param(k, v) for k, v in sorted(run_params.items())]

Karmel Allison's avatar
Karmel Allison committed
361

362
def _collect_tensorflow_environment_variables(run_info):
363
364
365
  run_info["tensorflow_environment_variables"] = [
      {"name": k, "value": v}
      for k, v in sorted(os.environ.items()) if k.startswith("TF_")]
366
367
368
369
370
371
372
373
374
375


# The following code is mirrored from tensorflow/tools/test/system_info_lib
# which is not exposed for import.
def _collect_cpu_info(run_info):
  """Collect the CPU information for the local environment."""
  cpu_info = {}

  cpu_info["num_cores"] = multiprocessing.cpu_count()

376
377
378
379
  try:
    # Note: cpuinfo is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import cpuinfo    # pylint: disable=g-import-not-at-top
380

381
382
383
    info = cpuinfo.get_cpu_info()
    cpu_info["cpu_info"] = info["brand"]
    cpu_info["mhz_per_cpu"] = info["hz_advertised_raw"][0] / 1.0e6
384

385
386
    run_info["machine_config"]["cpu_info"] = cpu_info
  except ImportError:
387
    logging.warn(
388
        "'cpuinfo' not imported. CPU info will not be logged.")
389
390
391


def _collect_memory_info(run_info):
392
393
394
395
396
397
398
399
  try:
    # Note: psutil is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import psutil   # pylint: disable=g-import-not-at-top
    vmem = psutil.virtual_memory()
    run_info["machine_config"]["memory_total"] = vmem.total
    run_info["machine_config"]["memory_available"] = vmem.available
  except ImportError:
400
    logging.warn(
401
        "'psutil' not imported. Memory info will not be logged.")
402
403


404
405
406
407
408
409
410
def _collect_test_environment(run_info):
  """Detect the local environment, eg GCE, AWS or DGX, etc."""
  if cloud_lib.on_gcp():
    run_info["test_environment"] = GCP_TEST_ENV
  # TODO(scottzhu): Add more testing env detection for other platform


411
412
413
414
415
416
417
def _parse_gpu_model(physical_device_desc):
  # Assume all the GPU connected are same model
  for kv in physical_device_desc.split(","):
    k, _, v = kv.partition(":")
    if k.strip() == "name":
      return v.strip()
  return None
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
418
419
420
421
422
423
424


def _convert_to_json_dict(input_dict):
  if input_dict:
    return [{"name": k, "value": v} for k, v in sorted(input_dict.items())]
  else:
    return []