ncf_keras_main.py 20.1 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import json
Shining Sun's avatar
Shining Sun committed
26
27
28
import os

# pylint: disable=g-bad-import-order
David Chen's avatar
David Chen committed
29
from absl import app
Shining Sun's avatar
Shining Sun committed
30
from absl import flags
31
from absl import logging
Shining Sun's avatar
Shining Sun committed
32
33
34
import tensorflow as tf
# pylint: enable=g-bad-import-order

35
from official.recommendation import constants as rconst
36
from official.recommendation import movielens
Shining Sun's avatar
Shining Sun committed
37
from official.recommendation import ncf_common
38
from official.recommendation import ncf_input_pipeline
Shining Sun's avatar
Shining Sun committed
39
40
41
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
42
from official.utils.misc import distribution_utils
43
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
44
from official.utils.misc import model_helpers
Nimit Nigania's avatar
Nimit Nigania committed
45
from official.utils.flags import core as flags_core
Shining Sun's avatar
Shining Sun committed
46
47
48
49

FLAGS = flags.FLAGS


guptapriya's avatar
guptapriya committed
50
51
def metric_fn(logits, dup_mask, params):
  dup_mask = tf.cast(dup_mask, tf.float32)
52
  logits = tf.slice(logits, [0, 1], [-1, -1])
guptapriya's avatar
guptapriya committed
53
54
55
  in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
      logits,
      dup_mask,
guptapriya's avatar
cleanup  
guptapriya committed
56
      params["match_mlperf"])
guptapriya's avatar
guptapriya committed
57
58
59
60
  metric_weights = tf.cast(metric_weights, tf.float32)
  return in_top_k, metric_weights


61
62
63
64
65
66
class MetricLayer(tf.keras.layers.Layer):
  """Custom layer of metrics for NCF model."""

  def __init__(self, params):
    super(MetricLayer, self).__init__()
    self.params = params
guptapriya's avatar
guptapriya committed
67

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
  def call(self, inputs, training=False):
69
    logits, dup_mask = inputs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
71
72
73
74
75
76
77
78
79
80

    if training:
      hr_sum = 0.0
      hr_count = 0.0
    else:
      metric, metric_weights = metric_fn(logits, dup_mask, self.params)
      hr_sum = tf.reduce_sum(metric * metric_weights)
      hr_count = tf.reduce_sum(metric_weights)

    self.add_metric(hr_sum, name="hr_sum", aggregation="mean")
    self.add_metric(hr_count, name="hr_count", aggregation="mean")
guptapriya's avatar
guptapriya committed
81
    return logits
82
83


84
85
86
87
class LossLayer(tf.keras.layers.Layer):
  """Pass-through loss layer for NCF model."""

  def __init__(self, loss_normalization_factor):
88
89
    # The loss may overflow in float16, so we use float32 instead.
    super(LossLayer, self).__init__(dtype="float32")
90
91
92
93
94
95
96
97
98
99
100
101
102
    self.loss_normalization_factor = loss_normalization_factor
    self.loss = tf.keras.losses.SparseCategoricalCrossentropy(
        from_logits=True, reduction="sum")

  def call(self, inputs):
    logits, labels, valid_pt_mask_input = inputs
    loss = self.loss(
        y_true=labels, y_pred=logits, sample_weight=valid_pt_mask_input)
    loss = loss * (1.0 / self.loss_normalization_factor)
    self.add_loss(loss)
    return logits


Shining Sun's avatar
Shining Sun committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


118
119
120
121
122
123
124
125
class CustomEarlyStopping(tf.keras.callbacks.Callback):
  """Stop training has reached a desired hit rate."""

  def __init__(self, monitor, desired_value):
    super(CustomEarlyStopping, self).__init__()

    self.monitor = monitor
    self.desired = desired_value
126
    self.stopped_epoch = 0
127
128
129
130
131
132
133
134
135

  def on_epoch_end(self, epoch, logs=None):
    current = self.get_monitor_value(logs)
    if current and current >= self.desired:
      self.stopped_epoch = epoch
      self.model.stop_training = True

  def on_train_end(self, logs=None):
    if self.stopped_epoch > 0:
Haoyu Zhang's avatar
Haoyu Zhang committed
136
      print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
137
138
139
140
141

  def get_monitor_value(self, logs):
    logs = logs or {}
    monitor_value = logs.get(self.monitor)
    if monitor_value is None:
Haoyu Zhang's avatar
Haoyu Zhang committed
142
143
144
      logging.warning("Early stopping conditioned on metric `%s` "
                      "which is not available. Available metrics are: %s",
                      self.monitor, ",".join(list(logs.keys())))
145
146
147
    return monitor_value


Shining Sun's avatar
Shining Sun committed
148
149
def _get_keras_model(params):
  """Constructs and returns the model."""
Haoyu Zhang's avatar
Haoyu Zhang committed
150
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
151
152

  user_input = tf.keras.layers.Input(
153
      shape=(1,), name=movielens.USER_COLUMN, dtype=tf.int32)
Shining Sun's avatar
Shining Sun committed
154
155

  item_input = tf.keras.layers.Input(
156
      shape=(1,), name=movielens.ITEM_COLUMN, dtype=tf.int32)
guptapriya's avatar
guptapriya committed
157

158
  valid_pt_mask_input = tf.keras.layers.Input(
159
      shape=(1,), name=rconst.VALID_POINT_MASK, dtype=tf.bool)
160
161

  dup_mask_input = tf.keras.layers.Input(
162
      shape=(1,), name=rconst.DUPLICATE_MASK, dtype=tf.int32)
163
164

  label_input = tf.keras.layers.Input(
165
      shape=(1,), name=rconst.TRAIN_LABEL_KEY, dtype=tf.bool)
Shining Sun's avatar
Shining Sun committed
166

167
  base_model = neumf_model.construct_model(user_input, item_input, params)
Shining Sun's avatar
Shining Sun committed
168

169
  logits = base_model.output
170

Shining Sun's avatar
Shining Sun committed
171
  zeros = tf.keras.layers.Lambda(
172
      lambda x: x * 0)(logits)
Shining Sun's avatar
Shining Sun committed
173
174

  softmax_logits = tf.keras.layers.concatenate(
175
      [zeros, logits],
Shining Sun's avatar
Shining Sun committed
176
177
      axis=-1)

178
179
  # Custom training loop calculates loss and metric as a part of
  # training/evaluation step function.
180
181
  if not params["keras_use_ctl"]:
    softmax_logits = MetricLayer(params)([softmax_logits, dup_mask_input])
182
183
184
185
    # TODO(b/134744680): Use model.add_loss() instead once the API is well
    # supported.
    softmax_logits = LossLayer(batch_size)(
        [softmax_logits, label_input, valid_pt_mask_input])
186

Shining Sun's avatar
Shining Sun committed
187
  keras_model = tf.keras.Model(
guptapriya's avatar
guptapriya committed
188
189
190
191
192
193
      inputs={
          movielens.USER_COLUMN: user_input,
          movielens.ITEM_COLUMN: item_input,
          rconst.VALID_POINT_MASK: valid_pt_mask_input,
          rconst.DUPLICATE_MASK: dup_mask_input,
          rconst.TRAIN_LABEL_KEY: label_input},
Shining Sun's avatar
Shining Sun committed
194
195
196
197
198
199
200
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model


def run_ncf(_):
201
202
  """Run NCF training and eval with Keras."""

203
204
  keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

guptapriya's avatar
guptapriya committed
205
206
207
  if FLAGS.seed is not None:
    print("Setting tf seed")
    tf.random.set_seed(FLAGS.seed)
208

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
209
  model_helpers.apply_clean(FLAGS)
Shining Sun's avatar
Shining Sun committed
210

211
212
213
214
215
216
  if FLAGS.dtype == "fp16" and FLAGS.fp16_implementation == "keras":
    policy = tf.keras.mixed_precision.experimental.Policy(
        "mixed_float16",
        loss_scale=flags_core.get_loss_scale(FLAGS, default_for_fp16="dynamic"))
    tf.keras.mixed_precision.experimental.set_policy(policy)

217
218
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
219
220
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
221
222

  params = ncf_common.parse_flags(FLAGS)
223
224
  params["distribute_strategy"] = strategy

225
  if not keras_utils.is_v2_0() and strategy is not None:
226
227
    logging.error("NCF Keras only works with distribution strategy in TF 2.0")
    return
guptapriya's avatar
guptapriya committed
228
  if (params["keras_use_ctl"] and (
229
      not keras_utils.is_v2_0() or strategy is None)):
230
    logging.error(
guptapriya's avatar
guptapriya committed
231
        "Custom training loop only works with tensorflow 2.0 and dist strat.")
232
    return
233
234
235
  if params["use_tpu"] and not params["keras_use_ctl"]:
    logging.error("Custom training loop must be used when using TPUStrategy.")
    return
236

237
  batch_size = params["batch_size"]
238
239
240
241
242
243
244
245
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
  callbacks = [time_callback]

  producer, input_meta_data = None, None
  generate_input_online = params["train_dataset_path"] is None

  if generate_input_online:
    # Start data producing thread.
246
    num_users, num_items, _, _, producer = ncf_common.get_inputs(params)
247
248
249
250
251
    producer.start()
    per_epoch_callback = IncrementEpochCallback(producer)
    callbacks.append(per_epoch_callback)
  else:
    assert params["eval_dataset_path"] and params["input_meta_data_path"]
252
    with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
253
254
255
      input_meta_data = json.loads(reader.read().decode("utf-8"))
      num_users = input_meta_data["num_users"]
      num_items = input_meta_data["num_items"]
Shining Sun's avatar
Shining Sun committed
256
257

  params["num_users"], params["num_items"] = num_users, num_items
258
259
260

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
guptapriya's avatar
guptapriya committed
261
        "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
262
    callbacks.append(early_stopping_callback)
263

264
265
266
267
268
269
270
271
272
273
274
275
276
  (train_input_dataset, eval_input_dataset,
   num_train_steps, num_eval_steps) = \
    (ncf_input_pipeline.create_ncf_input_data(
        params, producer, input_meta_data, strategy))
  steps_per_epoch = None if generate_input_online else num_train_steps

  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
    optimizer = tf.keras.optimizers.Adam(
        learning_rate=params["learning_rate"],
        beta_1=params["beta1"],
        beta_2=params["beta2"],
        epsilon=params["epsilon"])
277
    if FLAGS.fp16_implementation == "graph_rewrite":
278
279
      optimizer = \
        tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
280
            optimizer,
281
282
            loss_scale=flags_core.get_loss_scale(FLAGS,
                                                 default_for_fp16="dynamic"))
283
284
285
286
287
288
    elif FLAGS.dtype == "fp16" and params["keras_use_ctl"]:
      # When keras_use_ctl is False, instead Model.fit() automatically applies
      # loss scaling so we don't need to create a LossScaleOptimizer.
      optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
          optimizer,
          tf.keras.mixed_precision.experimental.global_policy().loss_scale)
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

    if params["keras_use_ctl"]:
      train_loss, eval_results = run_ncf_custom_training(
          params,
          strategy,
          keras_model,
          optimizer,
          callbacks,
          train_input_dataset,
          eval_input_dataset,
          num_train_steps,
          num_eval_steps,
          generate_input_online=generate_input_online)
    else:
      # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
      # a valid arg for this model. Also remove as a valid flag.
      if FLAGS.force_v2_in_keras_compile is not None:
        keras_model.compile(
            optimizer=optimizer,
            run_eagerly=FLAGS.run_eagerly,
            experimental_run_tf_function=FLAGS.force_v2_in_keras_compile)
310
      else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
311
312
313
314
315
316
317
318
319
320
321
        keras_model.compile(optimizer=optimizer, run_eagerly=FLAGS.run_eagerly)

      if not FLAGS.ml_perf:
        # Create Tensorboard summary and checkpoint callbacks.
        summary_dir = os.path.join(FLAGS.model_dir, "summaries")
        summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
        checkpoint_path = os.path.join(FLAGS.model_dir, "checkpoint")
        checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
            checkpoint_path, save_weights_only=True)

        callbacks += [summary_callback, checkpoint_callback]
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

      history = keras_model.fit(
          train_input_dataset,
          epochs=FLAGS.train_epochs,
          steps_per_epoch=steps_per_epoch,
          callbacks=callbacks,
          validation_data=eval_input_dataset,
          validation_steps=num_eval_steps,
          verbose=2)

      logging.info("Training done. Start evaluating")

      eval_loss_and_metrics = keras_model.evaluate(
          eval_input_dataset, steps=num_eval_steps, verbose=2)

      logging.info("Keras evaluation is done.")

      # Keras evaluate() API returns scalar loss and metric values from
      # evaluation as a list. Here, the returned list would contain
      # [evaluation loss, hr sum, hr count].
      eval_hit_rate = eval_loss_and_metrics[1] / eval_loss_and_metrics[2]

      # Format evaluation result into [eval loss, eval hit accuracy].
      eval_results = [eval_loss_and_metrics[0], eval_hit_rate]

      if history and history.history:
        train_history = history.history
        train_loss = train_history["loss"][-1]

  stats = build_stats(train_loss, eval_results, time_callback)
  return stats
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387


def run_ncf_custom_training(params,
                            strategy,
                            keras_model,
                            optimizer,
                            callbacks,
                            train_input_dataset,
                            eval_input_dataset,
                            num_train_steps,
                            num_eval_steps,
                            generate_input_online=True):
  """Runs custom training loop.

  Args:
    params: Dictionary containing training parameters.
    strategy: Distribution strategy to be used for distributed training.
    keras_model: Model used for training.
    optimizer: Optimizer used for training.
    callbacks: Callbacks to be invoked between batches/epochs.
    train_input_dataset: tf.data.Dataset used for training.
    eval_input_dataset: tf.data.Dataset used for evaluation.
    num_train_steps: Total number of steps to run for training.
    num_eval_steps: Total number of steps to run for evaluation.
    generate_input_online: Whether input data was generated by data producer.
      When data is generated by data producer, then train dataset must be
      re-initialized after every epoch.

  Returns:
    A tuple of train loss and a list of training and evaluation results.
  """
  loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
      reduction="sum", from_logits=True)
  train_input_iterator = iter(
      strategy.experimental_distribute_dataset(train_input_dataset))
388

389
390
  def train_step(train_iterator):
    """Called once per step to train the model."""
391

392
393
394
395
    def step_fn(features):
      """Computes loss and applied gradient per replica."""
      with tf.GradientTape() as tape:
        softmax_logits = keras_model(features)
396
397
        # The loss can overflow in float16, so we cast to float32.
        softmax_logits = tf.cast(softmax_logits, "float32")
398
399
400
401
402
403
        labels = features[rconst.TRAIN_LABEL_KEY]
        loss = loss_object(
            labels,
            softmax_logits,
            sample_weight=features[rconst.VALID_POINT_MASK])
        loss *= (1.0 / params["batch_size"])
Nimit Nigania's avatar
Nimit Nigania committed
404
405
        if FLAGS.dtype == "fp16":
          loss = optimizer.get_scaled_loss(loss)
406
407

      grads = tape.gradient(loss, keras_model.trainable_variables)
Nimit Nigania's avatar
Nimit Nigania committed
408
409
      if FLAGS.dtype == "fp16":
        grads = optimizer.get_unscaled_gradients(grads)
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
      # Converting gradients to dense form helps in perf on GPU for NCF
      grads = neumf_model.sparse_to_dense_grads(
          list(zip(grads, keras_model.trainable_variables)))
      optimizer.apply_gradients(grads)
      return loss

    per_replica_losses = strategy.experimental_run_v2(
        step_fn, args=(next(train_iterator),))
    mean_loss = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
    return mean_loss

  def eval_step(eval_iterator):
    """Called once per eval step to compute eval metrics."""

    def step_fn(features):
      """Computes eval metrics per replica."""
      softmax_logits = keras_model(features)
      in_top_k, metric_weights = metric_fn(softmax_logits,
                                           features[rconst.DUPLICATE_MASK],
                                           params)
      hr_sum = tf.reduce_sum(in_top_k * metric_weights)
      hr_count = tf.reduce_sum(metric_weights)
      return hr_sum, hr_count
434

435
436
437
438
439
440
441
442
    per_replica_hr_sum, per_replica_hr_count = (
        strategy.experimental_run_v2(
            step_fn, args=(next(eval_iterator),)))
    hr_sum = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
    hr_count = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
    return hr_sum, hr_count
443

444
445
446
  if not FLAGS.run_eagerly:
    train_step = tf.function(train_step)
    eval_step = tf.function(eval_step)
447

448
449
  for callback in callbacks:
    callback.on_train_begin()
450

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
451
452
453
454
455
456
457
458
459
460
  # Not writing tensorboard summaries if running in MLPerf.
  if FLAGS.ml_perf:
    eval_summary_writer, train_summary_writer = None, None
  else:
    summary_dir = os.path.join(FLAGS.model_dir, "summaries")
    eval_summary_writer = tf.summary.create_file_writer(
        os.path.join(summary_dir, "eval"))
    train_summary_writer = tf.summary.create_file_writer(
        os.path.join(summary_dir, "train"))

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
  train_loss = 0
  for epoch in range(FLAGS.train_epochs):
    for cb in callbacks:
      cb.on_epoch_begin(epoch)

    # As NCF dataset is sampled with randomness, not repeating
    # data elements in each epoch has significant impact on
    # convergence. As so, offline-generated TF record files
    # contains all epoch worth of data. Thus we do not need
    # to initialize dataset when reading from tf record files.
    if generate_input_online:
      train_input_iterator = iter(
          strategy.experimental_distribute_dataset(train_input_dataset))

    train_loss = 0
    for step in range(num_train_steps):
      current_step = step + epoch * num_train_steps
      for c in callbacks:
        c.on_batch_begin(current_step)

      train_loss += train_step(train_input_iterator)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
483
484
485
486
487
488
      # Write train loss once in every 100 steps.
      if train_summary_writer and step % 100 == 0:
        with train_summary_writer.as_default():
          tf.summary.scalar("training_loss", train_loss/(step + 1),
                            step=current_step)

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
      for c in callbacks:
        c.on_batch_end(current_step)

    train_loss /= num_train_steps
    logging.info("Done training epoch %s, epoch loss=%s.", epoch + 1,
                 train_loss)

    eval_input_iterator = iter(
        strategy.experimental_distribute_dataset(eval_input_dataset))
    hr_sum = 0
    hr_count = 0
    for _ in range(num_eval_steps):
      step_hr_sum, step_hr_count = eval_step(eval_input_iterator)
      hr_sum += step_hr_sum
      hr_count += step_hr_count

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
505
506
507
508
509
    logging.info("Done eval epoch %s, hit_rate=%s.", epoch + 1,
                 hr_sum / hr_count)
    if eval_summary_writer:
      with eval_summary_writer.as_default():
        tf.summary.scalar("hit_rate", hr_sum / hr_count, step=current_step)
510
511
512
513
514
515
516
517

    if (FLAGS.early_stopping and
        float(hr_sum / hr_count) > params["hr_threshold"]):
      break

  for c in callbacks:
    c.on_train_end()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
518
519
520
521
522
523
524
  # Saving the model at the end of training.
  if not FLAGS.ml_perf:
    checkpoint = tf.train.Checkpoint(model=keras_model, optimizer=optimizer)
    checkpoint_path = os.path.join(FLAGS.model_dir, "ctl_checkpoint")
    checkpoint.save(checkpoint_path)
    logging.info("Saving model as TF checkpoint: %s", checkpoint_path)

525
  return train_loss, [None, hr_sum / hr_count]
526
527


528
def build_stats(loss, eval_result, time_callback):
529
530
  """Normalizes and returns dictionary of stats.

Haoyu Zhang's avatar
Haoyu Zhang committed
531
532
533
534
535
536
537
538
  Args:
    loss: The final loss at training time.
    eval_result: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
    time_callback: Time tracking callback likely used during keras.fit.

  Returns:
    Dictionary of normalized results.
539
540
  """
  stats = {}
541
  if loss:
Haoyu Zhang's avatar
Haoyu Zhang committed
542
    stats["loss"] = loss
543
544

  if eval_result:
Haoyu Zhang's avatar
Haoyu Zhang committed
545
546
    stats["eval_loss"] = eval_result[0]
    stats["eval_hit_rate"] = eval_result[1]
547
548
549

  if time_callback:
    timestamp_log = time_callback.timestamp_log
Haoyu Zhang's avatar
Haoyu Zhang committed
550
551
    stats["step_timestamp_log"] = timestamp_log
    stats["train_finish_time"] = time_callback.train_finish_time
552
    if len(timestamp_log) > 1:
Haoyu Zhang's avatar
Haoyu Zhang committed
553
      stats["avg_exp_per_second"] = (
554
555
556
557
558
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
559
560
561
562
563
564
565
566
567
568
569


def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    run_ncf(FLAGS)


if __name__ == "__main__":
  ncf_common.define_ncf_flags()
David Chen's avatar
David Chen committed
570
  app.run(main)