keras_cifar_main.py 8.03 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Runs a ResNet model on the Cifar-10 dataset."""
16
17
18
19
20
21
22
23
24
25

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
26
from official.resnet.keras import keras_common
Shining Sun's avatar
Shining Sun committed
27
from official.resnet.keras import resnet_cifar_model
28
29
30
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
Toby Boyd's avatar
Toby Boyd committed
31
from official.utils.misc import keras_utils
32
33


34
35
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
36
37
]

38

39
40
41
42
def learning_rate_schedule(current_epoch,
                           current_batch,
                           batches_per_epoch,
                           batch_size):
Shining Sun's avatar
Shining Sun committed
43
  """Handles linear scaling rule and LR decay.
44

45
46
  Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
  provided scaling factor.
47
48
49
50

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.
51
52
    batches_per_epoch: integer, number of steps in an epoch.
    batch_size: integer, total batch sized.
53
54
55
56

  Returns:
    Adjusted learning rate.
  """
57
  del current_batch, batches_per_epoch  # not used
Shining Sun's avatar
Shining Sun committed
58
  initial_learning_rate = keras_common.BASE_LEARNING_RATE * batch_size / 128
59
  learning_rate = initial_learning_rate
60
  for mult, start_epoch in LR_SCHEDULE:
61
62
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
63
64
65
66
67
68
69
70
71
72
73
    else:
      break
  return learning_rate


def parse_record_keras(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

Shining Sun's avatar
Shining Sun committed
74
  This method converts the label to one hot to fit the loss function.
75

76
77
78
79
80
81
82
83
84
85
  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: Data type to use for input images.

  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
  """
  image, label = cifar_main.parse_record(raw_record, is_training, dtype)
86
  label = tf.compat.v1.sparse_to_dense(label, (cifar_main.NUM_CLASSES,), 1)
87
88
89
  return image, label


Shining Sun's avatar
Shining Sun committed
90
91
def run(flags_obj):
  """Run ResNet Cifar-10 training and eval loop using native Keras APIs.
92
93
94
95
96
97

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
98
99
100

  Returns:
    Dictionary of training and eval stats.
101
  """
102
103
  keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                 enable_xla=flags_obj.enable_xla)
104

105
106
107
108
109
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

110
111
112
113
114
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)
115

116
117
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
118
119
120
121
      num_gpus=flags_obj.num_gpus,
      num_workers=distribution_utils.configure_cluster(),
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs)
122

123
  strategy_scope = distribution_utils.get_strategy_scope(strategy)
124

125
  if flags_obj.use_synthetic_data:
126
    distribution_utils.set_up_synthetic_data()
Shining Sun's avatar
Shining Sun committed
127
    input_fn = keras_common.get_synth_input_fn(
128
129
130
131
        height=cifar_main.HEIGHT,
        width=cifar_main.WIDTH,
        num_channels=cifar_main.NUM_CHANNELS,
        num_classes=cifar_main.NUM_CLASSES,
Shining Sun's avatar
Shining Sun committed
132
        dtype=flags_core.get_tf_dtype(flags_obj))
133
  else:
134
    distribution_utils.undo_set_up_synthetic_data()
Shining Sun's avatar
Shining Sun committed
135
136
137
138
139
    input_fn = cifar_main.input_fn

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
140
      batch_size=flags_obj.batch_size,
Shining Sun's avatar
Shining Sun committed
141
      num_epochs=flags_obj.train_epochs,
142
143
144
145
146
147
148
149
150
151
152
153
      parse_record_fn=parse_record_keras,
      datasets_num_private_threads=flags_obj.datasets_num_private_threads,
      dtype=dtype)

  eval_input_dataset = None
  if not flags_obj.skip_eval:
    eval_input_dataset = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=parse_record_keras)
154

Shining Sun's avatar
Shining Sun committed
155
  with strategy_scope:
Shining Sun's avatar
Shining Sun committed
156
157
    optimizer = keras_common.get_optimizer()
    model = resnet_cifar_model.resnet56(classes=cifar_main.NUM_CLASSES)
Shining Sun's avatar
Shining Sun committed
158

Shining Sun's avatar
Shining Sun committed
159
160
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
161
162
163
                  metrics=(['categorical_accuracy']
                           if flags_obj.report_accuracy_metrics else None),
                  run_eagerly=flags_obj.run_eagerly)
Shining Sun's avatar
Shining Sun committed
164

165
  callbacks = keras_common.get_callbacks(
166
      learning_rate_schedule, cifar_main.NUM_IMAGES['train'])
167

Shining Sun's avatar
Shining Sun committed
168
169
170
171
172
173
174
  train_steps = cifar_main.NUM_IMAGES['train'] // flags_obj.batch_size
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

175
  num_eval_steps = (cifar_main.NUM_IMAGES['validation'] //
176
177
                    flags_obj.batch_size)

Shining Sun's avatar
Shining Sun committed
178
179
  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
180
181
182
183
    if flags_obj.set_learning_phase_to_train:
      # TODO(haoyuzhang): Understand slowdown of setting learning phase when
      # not using distribution strategy.
      tf.keras.backend.set_learning_phase(1)
Shining Sun's avatar
Shining Sun committed
184
185
186
    num_eval_steps = None
    validation_data = None

187
188
189
190
191
192
  if not strategy and flags_obj.explicit_gpu_placement:
    # TODO(b/135607227): Add device scope automatically in Keras training loop
    # when not using distribition strategy.
    no_dist_strat_device = tf.device('/device:GPU:0')
    no_dist_strat_device.__enter__()

193
  history = model.fit(train_input_dataset,
194
195
                      epochs=train_epochs,
                      steps_per_epoch=train_steps,
196
                      callbacks=callbacks,
197
198
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
199
                      validation_freq=flags_obj.epochs_between_evals,
200
                      verbose=2)
201
  eval_output = None
202
  if not flags_obj.skip_eval:
Shining Sun's avatar
Shining Sun committed
203
204
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
205
                                 verbose=2)
206
207
208
209

  if not strategy and flags_obj.explicit_gpu_placement:
    no_dist_strat_device.__exit__()

210
  stats = keras_common.build_stats(history, eval_output, callbacks)
211
  return stats
212

213

214
215
216
217
218
219
220
221
222
223
def define_cifar_flags():
  keras_common.define_keras_flags(dynamic_loss_scale=False)

  flags_core.set_defaults(data_dir='/tmp/cifar10_data/cifar-10-batches-bin',
                          model_dir='/tmp/cifar10_model',
                          train_epochs=182,
                          epochs_between_evals=10,
                          batch_size=128)


224
def main(_):
225
  with logger.benchmark_context(flags.FLAGS):
226
    return run(flags.FLAGS)
227
228
229


if __name__ == '__main__':
230
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
231
  define_cifar_flags()
232
  absl_app.run(main)