ncf_main.py 19.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""
20

21
22
23
24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import contextlib
26
27
import heapq
import math
28
import multiprocessing
29
import os
30
31
import signal
import typing
32

33
# pylint: disable=g-bad-import-order
34
import numpy as np
35
36
from absl import app as absl_app
from absl import flags
37
import tensorflow as tf
38
# pylint: enable=g-bad-import-order
39

Reed's avatar
Reed committed
40
from tensorflow.contrib.compiler import xla
41
from official.datasets import movielens
42
43
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
44
from official.recommendation import model_runner
45
from official.recommendation import neumf_model
46
47
48
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
49
from official.utils.logs import mlperf_helper
50
from official.utils.misc import distribution_utils
51
from official.utils.misc import model_helpers
52
53


Reed's avatar
Reed committed
54
55
56
FLAGS = flags.FLAGS


57
58
59
def construct_estimator(num_gpus, model_dir, params, batch_size,
                        eval_batch_size):
  """Construct either an Estimator or TPUEstimator for NCF.
60
61

  Args:
62
63
64
65
66
    num_gpus: The number of gpus (Used to select distribution strategy)
    model_dir: The model directory for the estimator
    params: The params dict for the estimator
    batch_size: The mini-batch size for training.
    eval_batch_size: The batch size used during evaluation.
67
68

  Returns:
69
    An Estimator or TPUEstimator.
70
71
  """

72
73
74
75
76
77
  if params["use_tpu"]:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
    )
78
79
    tf.logging.info("Issuing reset command to TPU to ensure a clean state.")
    tf.Session.reset(tpu_cluster_resolver.get_master())
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

    tpu_config = tf.contrib.tpu.TPUConfig(
        iterations_per_loop=100,
        num_shards=8)

    run_config = tf.contrib.tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        model_dir=model_dir,
        session_config=tf.ConfigProto(
            allow_soft_placement=True, log_device_placement=False),
        tpu_config=tpu_config)

    tpu_params = {k: v for k, v in params.items() if k != "batch_size"}

    train_estimator = tf.contrib.tpu.TPUEstimator(
        model_fn=neumf_model.neumf_model_fn,
        use_tpu=True,
        train_batch_size=batch_size,
        params=tpu_params,
        config=run_config)

    eval_estimator = tf.contrib.tpu.TPUEstimator(
        model_fn=neumf_model.neumf_model_fn,
        use_tpu=False,
        train_batch_size=1,
105
        eval_batch_size=eval_batch_size,
106
107
108
109
110
111
        params=tpu_params,
        config=run_config)

    return train_estimator, eval_estimator

  distribution = distribution_utils.get_distribution_strategy(num_gpus=num_gpus)
112
113
  run_config = tf.estimator.RunConfig(train_distribute=distribution,
                                      eval_distribute=distribution)
114
  params["eval_batch_size"] = eval_batch_size
Reed's avatar
Reed committed
115
116
117
118
119
120
  model_fn = neumf_model.neumf_model_fn
  if params["use_xla_for_gpu"]:
    tf.logging.info("Using XLA for GPU for training and evaluation.")
    model_fn = xla.estimator_model_fn(model_fn)
  estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir,
                                     config=run_config, params=params)
121
  return estimator, estimator
122
123
124


def main(_):
Reed's avatar
Reed committed
125
126
  with logger.benchmark_context(FLAGS), \
       mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
127
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
128
    run_ncf(FLAGS)
129
    mlperf_helper.stitch_ncf()
130
131
132
133


def run_ncf(_):
  """Run NCF training and eval loop."""
134
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
135
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
136

137
138
139
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)

140
141
142
  num_gpus = flags_core.get_num_gpus(FLAGS)
  batch_size = distribution_utils.per_device_batch_size(
      int(FLAGS.batch_size), num_gpus)
143
144

  eval_per_user = rconst.NUM_EVAL_NEGATIVES + 1
Taylor Robie's avatar
Taylor Robie committed
145
146
  eval_batch_size = int(FLAGS.eval_batch_size or
                        max([FLAGS.batch_size, eval_per_user]))
147
148
149
150
151
152
  if eval_batch_size % eval_per_user:
    eval_batch_size = eval_batch_size // eval_per_user * eval_per_user
    tf.logging.warning(
        "eval examples per user does not evenly divide eval_batch_size. "
        "Overriding to {}".format(eval_batch_size))

153
154
155
156
157
  if FLAGS.use_synthetic_data:
    ncf_dataset = None
    cleanup_fn = lambda: None
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
158
159
    num_train_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
160
161
162
163
164
165
166
167
  else:
    ncf_dataset, cleanup_fn = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir,
        batch_size=batch_size,
        eval_batch_size=eval_batch_size,
        num_neg=FLAGS.num_neg,
        epochs_per_cycle=FLAGS.epochs_between_evals,
        match_mlperf=FLAGS.ml_perf,
shizhiw's avatar
shizhiw committed
168
        deterministic=FLAGS.seed is not None,
169
170
        use_subprocess=FLAGS.use_subprocess,
        cache_id=FLAGS.cache_id)
171
172
    num_users = ncf_dataset.num_users
    num_items = ncf_dataset.num_items
173
174
175
176
177
    num_train_steps = int(np.ceil(
        FLAGS.epochs_between_evals * ncf_dataset.num_train_positives *
        (1 + FLAGS.num_neg) / FLAGS.batch_size))
    num_eval_steps = int(np.ceil((1 + rconst.NUM_EVAL_NEGATIVES) *
                                 ncf_dataset.num_users / eval_batch_size))
178
179

  model_helpers.apply_clean(flags.FLAGS)
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
  params = {
      "use_seed": FLAGS.seed is not None,
      "hash_pipeline": FLAGS.hash_pipeline,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": FLAGS.learning_rate,
      "num_users": num_users,
      "num_items": num_items,
      "mf_dim": FLAGS.num_factors,
      "model_layers": [int(layer) for layer in FLAGS.layers],
      "mf_regularization": FLAGS.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in FLAGS.mlp_regularization],
      "num_neg": FLAGS.num_neg,
      "use_tpu": FLAGS.tpu is not None,
      "tpu": FLAGS.tpu,
      "tpu_zone": FLAGS.tpu_zone,
      "tpu_gcp_project": FLAGS.tpu_gcp_project,
      "beta1": FLAGS.beta1,
      "beta2": FLAGS.beta2,
      "epsilon": FLAGS.epsilon,
      "match_mlperf": FLAGS.ml_perf,
      "use_xla_for_gpu": FLAGS.use_xla_for_gpu,
      "use_estimator": FLAGS.use_estimator,
  }
  if FLAGS.use_estimator:
    train_estimator, eval_estimator = construct_estimator(
        num_gpus=num_gpus, model_dir=FLAGS.model_dir, params=params,
        batch_size=flags.FLAGS.batch_size, eval_batch_size=eval_batch_size)
  else:
    runner = model_runner.NcfModelRunner(ncf_dataset, params)
211

212
213
214
  # Create hooks that log information about the training and metric values
  train_hooks = hooks_helper.get_train_hooks(
      FLAGS.hooks,
215
      model_dir=FLAGS.model_dir,
216
217
      batch_size=FLAGS.batch_size,  # for ExamplesPerSecondHook
      tensors_to_log={"cross_entropy": "cross_entropy"}
218
219
220
  )
  run_params = {
      "batch_size": FLAGS.batch_size,
221
      "eval_batch_size": eval_batch_size,
222
223
224
225
      "number_factors": FLAGS.num_factors,
      "hr_threshold": FLAGS.hr_threshold,
      "train_epochs": FLAGS.train_epochs,
  }
226
  benchmark_logger = logger.get_benchmark_logger()
227
228
229
  benchmark_logger.log_run_info(
      model_name="recommendation",
      dataset_name=FLAGS.dataset,
230
231
      run_params=run_params,
      test_id=FLAGS.benchmark_test_id)
232
233


234
  pred_input_fn = None
235
  total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals
236
237
  target_reached = False
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
238
  for cycle_index in range(total_training_cycle):
239
    assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
240
    tf.logging.info("Starting a training cycle: {}/{}".format(
241
        cycle_index + 1, total_training_cycle))
242

243
244
245
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
                            value=cycle_index)

246
    # Train the model
247
248
249
250
251
252
    if FLAGS.use_estimator:
      train_input_fn, train_record_dir, batch_count = \
        data_preprocessing.make_input_fn(
            ncf_dataset=ncf_dataset, is_training=True)

      if batch_count != num_train_steps:
253
254
        raise ValueError(
            "Step counts do not match. ({} vs. {}) The async process is "
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
            "producing incorrect shards.".format(batch_count, num_train_steps))

      train_estimator.train(input_fn=train_input_fn, hooks=train_hooks,
                            steps=num_train_steps)
      if train_record_dir:
        tf.gfile.DeleteRecursively(train_record_dir)

      tf.logging.info("Beginning evaluation.")
      if pred_input_fn is None:
        pred_input_fn, _, eval_batch_count = data_preprocessing.make_input_fn(
            ncf_dataset=ncf_dataset, is_training=False)

        if eval_batch_count != num_eval_steps:
          raise ValueError(
              "Step counts do not match. ({} vs. {}) The async process is "
              "producing incorrect shards.".format(
                  eval_batch_count, num_eval_steps))

      mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                              value=cycle_index)
      eval_results = eval_estimator.evaluate(pred_input_fn,
                                             steps=num_eval_steps)
      tf.logging.info("Evaluation complete.")
    else:
      runner.train(num_train_steps)
      tf.logging.info("Beginning evaluation.")
      mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                              value=cycle_index)
      eval_results = runner.eval(num_eval_steps)
      tf.logging.info("Evaluation complete.")
285
286
    hr = float(eval_results[rconst.HR_KEY])
    ndcg = float(eval_results[rconst.NDCG_KEY])
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_TARGET,
        value={"epoch": cycle_index, "value": FLAGS.hr_threshold})
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
                            value={"epoch": cycle_index, "value": hr})
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
        value={"epoch": cycle_index, "value": rconst.NUM_EVAL_NEGATIVES})

    # Logged by the async process during record creation.
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_HP_NUM_USERS,
                            deferred=True)

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP, value=cycle_index)

303
304
305
    # Benchmark the evaluation results
    benchmark_logger.log_evaluation_result(eval_results)
    # Log the HR and NDCG results.
306
    tf.logging.info(
307
308
309
310
311
        "Iteration {}: HR = {:.4f}, NDCG = {:.4f}".format(
            cycle_index + 1, hr, ndcg))

    # If some evaluation threshold is met
    if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
312
      target_reached = True
313
314
      break

315
316
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
                          value={"success": target_reached})
317
318
  cleanup_fn()  # Cleanup data construction artifacts and subprocess.

319
320
321
  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()

322
323
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)

324
325
326
327
328
329
330
331
332

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
  flags_core.define_base(export_dir=False)
  flags_core.define_performance(
      num_parallel_calls=False,
      inter_op=False,
      intra_op=False,
333
      synthetic_data=True,
334
      max_train_steps=False,
335
336
      dtype=False,
      all_reduce_alg=False
337
  )
338
  flags_core.define_device(tpu=True)
339
340
341
342
343
344
345
346
347
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
      train_epochs=2,
      batch_size=256,
348
349
350
      hooks="ProfilerHook",
      tpu=None
  )
351
352
353
354
355
356
357
358

  # Add ncf-specific flags
  flags.DEFINE_enum(
      name="dataset", default="ml-1m",
      enum_values=["ml-1m", "ml-20m"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Dataset to be trained and evaluated."))

359
360
361
362
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

363
364
365
366
367
368
369
  flags.DEFINE_string(
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

403
404
405
406
407
408
409
410
411
412
413
414
415
  flags.DEFINE_float(
      name="beta1", default=0.9,
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="beta2", default=0.999,
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="epsilon", default=1e-8,
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

416
417
418
419
420
421
422
423
  flags.DEFINE_float(
      name="hr_threshold", default=None,
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
424

425
  flags.DEFINE_bool(
426
      name="ml_perf", default=False,
427
428
429
430
431
432
433
434
435
436
437
438
439
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

Reed's avatar
Reed committed
440
441
442
443
444
445
446
447
448
449
450
451
  flags.DEFINE_bool(
      name="output_ml_perf_compliance_logging", default=False,
      help=flags_core.help_wrap(
          "If set, output the MLPerf compliance logging. This is only useful "
          "if one is running the model for MLPerf. See "
          "https://github.com/mlperf/policies/blob/master/training_rules.adoc"
          "#submission-compliance-logs for details. This uses sudo and so may "
          "ask for your password, as root access is needed to clear the system "
          "caches, which is required for MLPerf compliance."
      )
  )

452
453
454
455
456
457
458
459
460
461
462
  flags.DEFINE_integer(
      name="seed", default=None, help=flags_core.help_wrap(
          "This value will be used to seed both NumPy and TensorFlow."))

  flags.DEFINE_bool(
      name="hash_pipeline", default=False, help=flags_core.help_wrap(
          "This flag will perform a separate run of the pipeline and hash "
          "batches as they are produced. \nNOTE: this will significantly slow "
          "training. However it is useful to confirm that a random seed is "
          "does indeed make the data pipeline deterministic."))

463
464
465
  @flags.validator("eval_batch_size", "eval_batch_size must be at least {}"
                   .format(rconst.NUM_EVAL_NEGATIVES + 1))
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
466
467
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
468

469
470
471
472
473
474
  flags.DEFINE_bool(
      name="use_subprocess", default=True, help=flags_core.help_wrap(
          "By default, ncf_main.py starts async data generation process as a "
          "subprocess. If set to False, ncf_main.py will assume the async data "
          "generation process has already been started by the user."))

475
476
477
478
479
480
  flags.DEFINE_integer(name="cache_id", default=None, help=flags_core.help_wrap(
      "Use a specified cache_id rather than using a timestamp. This is only "
      "needed to synchronize across multiple workers. Generally this flag will "
      "not need to be set."
  ))

Reed's avatar
Reed committed
481
482
483
484
485
  flags.DEFINE_bool(
      name="use_xla_for_gpu", default=False, help=flags_core.help_wrap(
          "If True, use XLA for the model function. Only works when using a "
          "GPU. On TPUs, XLA is always used"))

486
487
488
489
  xla_message = "--use_xla_for_gpu is incompatible with --tpu"
  @flags.multi_flags_validator(["use_xla_for_gpu", "tpu"], message=xla_message)
  def xla_validator(flag_dict):
    return not flag_dict["use_xla_for_gpu"] or not flag_dict["tpu"]
Reed's avatar
Reed committed
490

491
492
493
494
495
496
497
498
499
  flags.DEFINE_bool(
      name="use_estimator", default=True, help=flags_core.help_wrap(
          "If True, use Estimator to train. Setting to False is slightly "
          "faster, but when False, the following are currently unsupported:\n"
          "  * Using TPUs\n"
          "  * Using more than 1 GPU\n"
          "  * Reloading from checkpoints\n"
          "  * Any hooks specified with --hooks\n"))

500
501
502

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
503
504
  define_ncf_flags()
  absl_app.run(main)