ncf_common.py 12.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Hongkun Yu's avatar
Hongkun Yu committed
15
"""Common functionalities used by both Keras and Estimator implementations."""
16

17
18
19
20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
23
import os

24
from absl import flags
25
from absl import logging
26
import numpy as np
27
28
import tensorflow as tf

29
from official.common import distribute_utils
30
from official.recommendation import constants as rconst
31
from official.recommendation import data_pipeline
32
from official.recommendation import data_preprocessing
33
from official.recommendation import movielens
34
from official.utils.flags import core as flags_core
35
from official.utils.misc import keras_utils
36

Reed's avatar
Reed committed
37
38
39
FLAGS = flags.FLAGS


Shining Sun's avatar
Shining Sun committed
40
41
42
43
def get_inputs(params):
  """Returns some parameters used by the model."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
44

Shining Sun's avatar
Shining Sun committed
45
46
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)
47

Shining Sun's avatar
Shining Sun committed
48
49
  if FLAGS.use_synthetic_data:
    producer = data_pipeline.DummyConstructor()
50
    num_users, num_items = movielens.DATASET_TO_NUM_USERS_AND_ITEMS[
Shining Sun's avatar
Shining Sun committed
51
52
53
        FLAGS.dataset]
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
54
  else:
Shining Sun's avatar
Shining Sun committed
55
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
Hongkun Yu's avatar
Hongkun Yu committed
56
57
58
        dataset=FLAGS.dataset,
        data_dir=FLAGS.data_dir,
        params=params,
Shining Sun's avatar
Shining Sun committed
59
60
        constructor_type=FLAGS.constructor_type,
        deterministic=FLAGS.seed is not None)
61
62
    num_train_steps = producer.train_batches_per_epoch
    num_eval_steps = producer.eval_batches_per_epoch
63

Shining Sun's avatar
Shining Sun committed
64
  return num_users, num_items, num_train_steps, num_eval_steps, producer
65
66
67


def parse_flags(flags_obj):
Taylor Robie's avatar
Taylor Robie committed
68
  """Convenience function to turn flags into params."""
69
70
  num_gpus = flags_core.get_num_gpus(flags_obj)

71
  batch_size = flags_obj.batch_size
Taylor Robie's avatar
Taylor Robie committed
72
  eval_batch_size = flags_obj.eval_batch_size or flags_obj.batch_size
73
74
75

  return {
      "train_epochs": flags_obj.train_epochs,
76
      "batches_per_step": 1,
77
78
79
80
81
82
83
84
85
      "use_seed": flags_obj.seed is not None,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": flags_obj.learning_rate,
      "mf_dim": flags_obj.num_factors,
      "model_layers": [int(layer) for layer in flags_obj.layers],
      "mf_regularization": flags_obj.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in flags_obj.mlp_regularization],
      "num_neg": flags_obj.num_neg,
86
      "distribution_strategy": flags_obj.distribution_strategy,
87
88
89
90
91
92
93
94
95
      "num_gpus": num_gpus,
      "use_tpu": flags_obj.tpu is not None,
      "tpu": flags_obj.tpu,
      "tpu_zone": flags_obj.tpu_zone,
      "tpu_gcp_project": flags_obj.tpu_gcp_project,
      "beta1": flags_obj.beta1,
      "beta2": flags_obj.beta2,
      "epsilon": flags_obj.epsilon,
      "match_mlperf": flags_obj.ml_perf,
Yuefeng Zhou's avatar
Yuefeng Zhou committed
96
      "epochs_between_evals": flags_obj.epochs_between_evals,
97
      "keras_use_ctl": flags_obj.keras_use_ctl,
98
      "hr_threshold": flags_obj.hr_threshold,
99
      "stream_files": flags_obj.tpu is not None,
100
101
102
      "train_dataset_path": flags_obj.train_dataset_path,
      "eval_dataset_path": flags_obj.eval_dataset_path,
      "input_meta_data_path": flags_obj.input_meta_data_path,
103
  }
104
105


106
def get_v1_distribution_strategy(params):
Shining Sun's avatar
Shining Sun committed
107
108
109
  """Returns the distribution strategy to use."""
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
Hongkun Yu's avatar
Hongkun Yu committed
110
111
112
113
    for name in [
        "googleapiclient.discovery", "googleapiclient.discovery_cache",
        "oauth2client.transport"
    ]:
Shining Sun's avatar
Shining Sun committed
114
      logging.getLogger(name).setLevel(logging.ERROR)
115

116
    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
Shining Sun's avatar
Shining Sun committed
117
118
119
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
Hongkun Yu's avatar
Hongkun Yu committed
120
        coordinator_name="coordinator")
121

122
    logging.info("Issuing reset command to TPU to ensure a clean state.")
Shining Sun's avatar
Shining Sun committed
123
    tf.Session.reset(tpu_cluster_resolver.get_master())
124

Shining Sun's avatar
Shining Sun committed
125
126
127
128
    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
Hongkun Yu's avatar
Hongkun Yu committed
129
130
131
132
133
134
        "session_master":
            tpu_cluster_resolver.get_master(),
        "eval_session_master":
            tpu_cluster_resolver.get_master(),
        "coordinator":
            tpu_cluster_resolver.cluster_spec().as_dict()["coordinator"]
Shining Sun's avatar
Shining Sun committed
135
    }
Haoyu Zhang's avatar
Haoyu Zhang committed
136
    os.environ["TF_CONFIG"] = json.dumps(tf_config_env)
137

138
    distribution = tf.distribute.experimental.TPUStrategy(
Shining Sun's avatar
Shining Sun committed
139
        tpu_cluster_resolver, steps_per_run=100)
140

Shining Sun's avatar
Shining Sun committed
141
  else:
142
    distribution = distribute_utils.get_distribution_strategy(
Shining Sun's avatar
Shining Sun committed
143
        num_gpus=params["num_gpus"])
144

Shining Sun's avatar
Shining Sun committed
145
  return distribution
146

147
148
149
150

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
Hongkun Yu's avatar
Hongkun Yu committed
151
152
153
154
155
156
157
158
159
160
  flags_core.define_base(
      model_dir=True,
      clean=True,
      train_epochs=True,
      epochs_between_evals=True,
      export_dir=False,
      run_eagerly=True,
      stop_threshold=True,
      num_gpu=True,
      distribution_strategy=True)
161
  flags_core.define_performance(
162
      synthetic_data=True,
Nimit Nigania's avatar
Nimit Nigania committed
163
      dtype=True,
164
      fp16_implementation=True,
Nimit Nigania's avatar
Nimit Nigania committed
165
166
      loss_scale=True,
      dynamic_loss_scale=True,
167
      enable_xla=True,
168
  )
169
  flags_core.define_device(tpu=True)
170
171
172
173
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

174
175
  movielens.define_flags()

176
177
178
  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
179
      dataset=movielens.ML_1M,
180
      train_epochs=2,
181
      batch_size=99000,
Hongkun Yu's avatar
Hongkun Yu committed
182
      tpu=None)
183
184

  # Add ncf-specific flags
185
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
186
187
188
      name="download_if_missing",
      default=True,
      help=flags_core.help_wrap(
189
190
          "Download data to data_dir if it is not already present."))

191
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
192
193
194
      name="eval_batch_size",
      default=None,
      help=flags_core.help_wrap(
195
196
197
198
199
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

200
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
201
202
      name="num_factors",
      default=8,
203
204
205
206
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
Hongkun Yu's avatar
Hongkun Yu committed
207
208
      name="layers",
      default=["64", "32", "16", "8"],
209
210
211
212
213
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
214
215
      name="mf_regularization",
      default=0.,
216
217
218
219
220
221
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
Hongkun Yu's avatar
Hongkun Yu committed
222
223
      name="mlp_regularization",
      default=["0.", "0.", "0.", "0."],
224
225
226
227
228
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
229
230
      name="num_neg",
      default=4,
231
232
233
234
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
235
236
      name="learning_rate",
      default=0.001,
237
238
      help=flags_core.help_wrap("The learning rate."))

239
  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
240
241
      name="beta1",
      default=0.9,
242
243
244
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
245
246
      name="beta2",
      default=0.999,
247
248
249
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
250
251
      name="epsilon",
      default=1e-8,
252
253
254
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

255
  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
256
257
      name="hr_threshold",
      default=1.0,
258
259
260
261
262
263
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
264

265
  flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
266
267
268
269
      name="constructor_type",
      default="bisection",
      enum_values=["bisection", "materialized"],
      case_sensitive=False,
270
271
272
273
274
      help=flags_core.help_wrap(
          "Strategy to use for generating false negatives. materialized has a"
          "precompute that scales badly, but a faster per-epoch construction"
          "time and can be faster on very large systems."))

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
  flags.DEFINE_string(
      name="train_dataset_path",
      default=None,
      help=flags_core.help_wrap("Path to training data."))

  flags.DEFINE_string(
      name="eval_dataset_path",
      default=None,
      help=flags_core.help_wrap("Path to evaluation data."))

  flags.DEFINE_string(
      name="input_meta_data_path",
      default=None,
      help=flags_core.help_wrap("Path to input meta data file."))

290
  flags.DEFINE_bool(
Hongkun Yu's avatar
Hongkun Yu committed
291
292
      name="ml_perf",
      default=False,
293
294
295
296
297
298
299
300
301
302
303
304
305
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

Reed's avatar
Reed committed
306
  flags.DEFINE_bool(
Hongkun Yu's avatar
Hongkun Yu committed
307
308
      name="output_ml_perf_compliance_logging",
      default=False,
Reed's avatar
Reed committed
309
310
311
312
313
314
      help=flags_core.help_wrap(
          "If set, output the MLPerf compliance logging. This is only useful "
          "if one is running the model for MLPerf. See "
          "https://github.com/mlperf/policies/blob/master/training_rules.adoc"
          "#submission-compliance-logs for details. This uses sudo and so may "
          "ask for your password, as root access is needed to clear the system "
Hongkun Yu's avatar
Hongkun Yu committed
315
          "caches, which is required for MLPerf compliance."))
Reed's avatar
Reed committed
316

317
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
318
319
320
      name="seed",
      default=None,
      help=flags_core.help_wrap(
321
322
          "This value will be used to seed both NumPy and TensorFlow."))

Hongkun Yu's avatar
Hongkun Yu committed
323
324
325
326
  @flags.validator(
      "eval_batch_size",
      "eval_batch_size must be at least {}".format(rconst.NUM_EVAL_NEGATIVES +
                                                   1))
327
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
328
329
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
330

331
332
333
334
  flags.DEFINE_bool(
      name="early_stopping",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
335
          "If True, we stop the training when it reaches hr_threshold"))
336

337
338
339
340
  flags.DEFINE_bool(
      name="keras_use_ctl",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
341
          "If True, we use a custom training loop for keras."))
342

Haoyu Zhang's avatar
Haoyu Zhang committed
343

Shining Sun's avatar
Shining Sun committed
344
def convert_to_softmax_logits(logits):
345
  """Convert the logits returned by the base model to softmax logits.
Shining Sun's avatar
Shining Sun committed
346

347
348
349
350
351
352
  Args:
    logits: used to create softmax.

  Returns:
    Softmax with the first column of zeros is equivalent to sigmoid.
  """
Shining Sun's avatar
Shining Sun committed
353
354
  softmax_logits = tf.concat([logits * 0, logits], axis=1)
  return softmax_logits