README.md 3.83 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
# Densenet121

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
8
## 论文

Densely Connected Convolutional Networks

- https://arxiv.org/pdf/1608.06993.pdf

sunxx1's avatar
sunxx1 committed
9
## 模型结构
sunxx1's avatar
sunxx1 committed
10

sunxx1's avatar
sunxx1 committed
11
12
DenseNet-121是一种深度卷积神经网络,如图所示,由Kaiming He等人于2017年提出。它是DenseNet系列中的一种,也是其中最流行的一种,被广泛应用于计算机视觉领域的图像分类、目标检测和语义分割等任务。

sunxx1's avatar
sunxx1 committed
13
![image-20231120204030674](./images/image-20231120204030674.png)
sunxx1's avatar
sunxx1 committed
14

sunxx1's avatar
sunxx1 committed
15
## 算法原理
sunxx1's avatar
sunxx1 committed
16

sunxx1's avatar
sunxx1 committed
17
DenseNet的核心组件为“Dense Block”,如图所示,由Dense connectivity和Transition Layer组成。每个密集块中包含若干个卷积层和池化层,每个卷积层都会接收前面所有层的输入,并将它们连接到自己的输出上。而过渡层则用于将前面密集块的输出进行降维,减少参数数量。
sunxx1's avatar
sunxx1 committed
18

sunxx1's avatar
sunxx1 committed
19
![image-20231120204212494](./images/image-20231120204212494.png)
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
## 环境配置
sunxx1's avatar
sunxx1 committed
22

sunxx1's avatar
sunxx1 committed
23
### Docker(方法一)
sunxx1's avatar
sunxx1 committed
24

sunxx1's avatar
sunxx1 committed
25
```python
sunxx1's avatar
sunxx1 committed
26
git clone --recursive http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git
sunxx1's avatar
sunxx1 committed
27
28
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
dcuai's avatar
dcuai committed
29
docker run --shm-size 10g --network=host --name=densenet121 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/densenet121_mmcv:/home/densenet121_mmcv -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
30

sunxx1's avatar
sunxx1 committed
31
cd densenet121_mmcv/mmclassification-mmcv
sunxx1's avatar
sunxx1 committed
32
33
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
34

sunxx1's avatar
sunxx1 committed
35
36
37
38
39
### Dockerfile(方法二)

```plaintext
cd densenet121_mmcv/docker
docker build --no-cache -t densenet121_mmcv:latest .
dcuai's avatar
dcuai committed
40
docker run --rm --shm-size 10g --network=host --name=densenet121 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../densenet121_mmcv:/home/densenet121_mmcv -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```

### Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

```plaintext
DTK驱动:dtk22.10.1
python:python3.7
torch:1.10.0
torchvision:0.10.0
mmcv:1.6.1
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装

```plaintext
pip install -r requirements.txt
```

sunxx1's avatar
sunxx1 committed
63
## 数据集
sunxx1's avatar
sunxx1 committed
64

sunxx1's avatar
sunxx1 committed
65
在本测试中可以使用ImageNet数据集。
sunxx1's avatar
sunxx1 committed
66

sunxx1's avatar
sunxx1 committed
67
68
69
下载ImageNet数据集:https://image-net.org/

下载val数据:链接:https://pan.baidu.com/s/1oXsmsYahGVG3uOZ8e535LA?pwd=c3bc 
bailuo's avatar
bailuo committed
70
71
72
提取码:c3bc,替换ImageNet数据集中的val目录

或者从SCNet下载[ImageNet](http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012)
dcuai's avatar
dcuai committed
73
- ImageNet数据集中的val部分[val](http://113.200.138.88:18080/aidatasets/project-dependency/shufflenet_v2_mmcv)
bailuo's avatar
bailuo committed
74
75

处理后的数据结构如下:
sunxx1's avatar
sunxx1 committed
76

sunxx1's avatar
sunxx1 committed
77
```
dcuai's avatar
dcuai committed
78
79
80
81
82
83
84
85
86
data
    ├──imagenet
        ├── meta
            ├──val.txt
            ├──train.txt
            ...
        ├── train
        ├── val
  
sunxx1's avatar
sunxx1 committed
87
```
sunxx1's avatar
sunxx1 committed
88

sunxx1's avatar
sunxx1 committed
89
## 训练
sunxx1's avatar
sunxx1 committed
90
91
92

将训练数据解压到data目录下。

sunxx1's avatar
sunxx1 committed
93
### 单机8卡
sunxx1's avatar
sunxx1 committed
94
95
96

    ./densenet121.sh

dcuai's avatar
dcuai committed
97
98
99
100
101
## result

![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)

### 精度
sunxx1's avatar
sunxx1 committed
102
103
104

测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。

sunxx1's avatar
sunxx1 committed
105
106
107
108
| 卡数 |           精度            |
| :--: | :-----------------------: |
|  8   | top1:0.74044;top5:0.91672 |

sunxx1's avatar
sunxx1 committed
109
110
111
112
113
114
115
116
117

## 应用场景

### 算法类别

图像分类

### 热点行业

dcuai's avatar
dcuai committed
118
制造,能源,交通,网安
sunxx1's avatar
sunxx1 committed
119

dcuai's avatar
dcuai committed
120
## 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
121

sunxx1's avatar
sunxx1 committed
122
http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git
sunxx1's avatar
sunxx1 committed
123

dcuai's avatar
dcuai committed
124
## 参考资料
sunxx1's avatar
sunxx1 committed
125

dcuai's avatar
dcuai committed
126
https://github.com/open-mmlab/mmpretrain