Commit 22b3e469 authored by sunxx1's avatar sunxx1
Browse files

更新readme

parent c7c7bb82
...@@ -23,7 +23,7 @@ DenseNet的核心组件为“Dense Block”,如图所示,由Dense connectivi ...@@ -23,7 +23,7 @@ DenseNet的核心组件为“Dense Block”,如图所示,由Dense connectivi
### Docker(方法一) ### Docker(方法一)
```python ```python
git clone --recursive http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git git clone --recursive http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换 # <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker run --shm-size 10g --network=host --name=nit-pytorch --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/Densenet121-mmcv:/home/Densenet121-mmcv -it <your IMAGE ID> bash docker run --shm-size 10g --network=host --name=nit-pytorch --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/Densenet121-mmcv:/home/Densenet121-mmcv -it <your IMAGE ID> bash
...@@ -32,18 +32,6 @@ cd Densenet121-mmcv/mmclassification-mmcv ...@@ -32,18 +32,6 @@ cd Densenet121-mmcv/mmclassification-mmcv
pip install -r requirements.txt pip install -r requirements.txt
``` ```
### Dockerfile(方法二)
```
git clone --recursive http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git
cd Densenet121-mmcv/docker
docker build --no-cache -t Densenet121-mmcv:latest .
docker run --rm --shm-size 10g --network=host --name=megatron --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../Densenet121-mmcv:/home/Densenet121-mmcv -it megatron bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:
cd mmclassification-mmcv
pip install -r requirements.txt
```
## 数据集 ## 数据集
在本测试中可以使用ImageNet数据集。 在本测试中可以使用ImageNet数据集。
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment