Commit 7cb9feb0 authored by dcuai's avatar dcuai
Browse files

Update README.md

parent dc10f07e
......@@ -26,7 +26,7 @@ DenseNet的核心组件为“Dense Block”,如图所示,由Dense connectivi
git clone --recursive http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker run --shm-size 10g --network=host --name=nit-pytorch --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/densenet121_mmcv:/home/densenet121_mmcv -it <your IMAGE ID> bash
docker run --shm-size 10g --network=host --name=densenet121 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/densenet121_mmcv:/home/densenet121_mmcv -it <your IMAGE ID> bash
cd densenet121_mmcv/mmclassification-mmcv
pip install -r requirements.txt
......@@ -37,7 +37,7 @@ pip install -r requirements.txt
```plaintext
cd densenet121_mmcv/docker
docker build --no-cache -t densenet121_mmcv:latest .
docker run --rm --shm-size 10g --network=host --name=megatron --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../densenet121_mmcv:/home/densenet121_mmcv -it megatron bash
docker run --rm --shm-size 10g --network=host --name=densenet121 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../densenet121_mmcv:/home/densenet121_mmcv -it <your IMAGE ID> bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```
......@@ -71,9 +71,15 @@ pip install -r requirements.txt
替换ImageNet数据集中的val目录,处理后的数据结构如下:
```
├── meta
├── train
├── val
data
├──imagenet
├── meta
├──val.txt
├──train.txt
...
├── train
├── val
```
## 训练
......@@ -84,7 +90,11 @@ pip install -r requirements.txt
./densenet121.sh
## 精度
## result
![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)
### 精度
测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。
......@@ -92,9 +102,6 @@ pip install -r requirements.txt
| :--: | :-----------------------: |
| 8 | top1:0.74044;top5:0.91672 |
## result
![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)
## 应用场景
......@@ -106,10 +113,10 @@ pip install -r requirements.txt
制造,能源,交通,网安
### 源码仓库及问题反馈
## 源码仓库及问题反馈
http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git
### 参考
## 参考资料
https://github.com/open-mmlab/mmpretrain
\ No newline at end of file
https://github.com/open-mmlab/mmpretrain
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment