README.md 2.91 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
# Densenet121

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
8
## 论文

Densely Connected Convolutional Networks

- https://arxiv.org/pdf/1608.06993.pdf

sunxx1's avatar
sunxx1 committed
9
10
## 模型介绍

sunxx1's avatar
sunxx1 committed
11
12
DenseNet-121是一种深度卷积神经网络,如图所示,由Kaiming He等人于2017年提出。它是DenseNet系列中的一种,也是其中最流行的一种,被广泛应用于计算机视觉领域的图像分类、目标检测和语义分割等任务。

sunxx1's avatar
sunxx1 committed
13
![image-20231120204030674](./images/image-20231120204030674.png)
sunxx1's avatar
sunxx1 committed
14
15
16

## 模型结构

sunxx1's avatar
sunxx1 committed
17
DenseNet的核心组件为“Dense Block”,如图所示,由Dense connectivity和Transition Layer组成。每个密集块中包含若干个卷积层和池化层,每个卷积层都会接收前面所有层的输入,并将它们连接到自己的输出上。而过渡层则用于将前面密集块的输出进行降维,减少参数数量。
sunxx1's avatar
sunxx1 committed
18

sunxx1's avatar
sunxx1 committed
19
![image-20231120204212494](./images/image-20231120204212494.png)
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
## 环境配置
sunxx1's avatar
sunxx1 committed
22

sunxx1's avatar
sunxx1 committed
23
### Docker(方法一)
sunxx1's avatar
sunxx1 committed
24

sunxx1's avatar
sunxx1 committed
25
26
27
28
29
```python
 git clone --recursive http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker run --shm-size 10g --network=host --name=nit-pytorch --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/Densenet121-mmcv:/home/Densenet121-mmcv -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
30

sunxx1's avatar
sunxx1 committed
31
32
33
cd Densenet121-mmcv/mmclassification-mmcv
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
34

sunxx1's avatar
sunxx1 committed
35
### Dockerfile(方法二)
sunxx1's avatar
sunxx1 committed
36

sunxx1's avatar
sunxx1 committed
37
38
39
40
41
42
43
44
45
46
47
```
git clone --recursive http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git
cd Densenet121-mmcv/docker
docker build --no-cache -t Densenet121-mmcv:latest .
docker run --rm --shm-size 10g --network=host --name=megatron --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../Densenet121-mmcv:/home/Densenet121-mmcv -it megatron bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:
cd mmclassification-mmcv
pip install -r requirements.txt
```

## 数据集
sunxx1's avatar
sunxx1 committed
48

sunxx1's avatar
sunxx1 committed
49
在本测试中可以使用ImageNet数据集。
sunxx1's avatar
sunxx1 committed
50

sunxx1's avatar
sunxx1 committed
51
52
53
54
55
```
├── meta
├── train
├── val
```
sunxx1's avatar
sunxx1 committed
56
57
58
59
60

### 训练

将训练数据解压到data目录下。

sunxx1's avatar
sunxx1 committed
61
### 单机8卡
sunxx1's avatar
sunxx1 committed
62
63
64

    ./densenet121.sh

sunxx1's avatar
sunxx1 committed
65
## 精度
sunxx1's avatar
sunxx1 committed
66
67
68

测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。

sunxx1's avatar
sunxx1 committed
69
70
71
72
| 卡数 |           精度            |
| :--: | :-----------------------: |
|  8   | top1:0.74044;top5:0.91672 |

sunxx1's avatar
sunxx1 committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
## result

![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)

## 应用场景

### 算法类别

图像分类

### 热点行业

制造,能源,交通,网安

sunxx1's avatar
sunxx1 committed
87
### 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
88

sunxx1's avatar
sunxx1 committed
89
http://developer.hpccube.com/codes/modelzoo/densenet121_mmcv.git
sunxx1's avatar
sunxx1 committed
90
91
92
93

### 参考

https://github.com/open-mmlab/mmpretrain