README.md 5.18 KB
Newer Older
dcuai's avatar
dcuai committed
1
# DenseNet121
sunxx1's avatar
sunxx1 committed
2

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
8
## 论文

Densely Connected Convolutional Networks

- https://arxiv.org/pdf/1608.06993.pdf

sunxx1's avatar
sunxx1 committed
9
## 模型结构
sunxx1's avatar
sunxx1 committed
10

sunxx1's avatar
sunxx1 committed
11
12
DenseNet-121是一种深度卷积神经网络,如图所示,由Kaiming He等人于2017年提出。它是DenseNet系列中的一种,也是其中最流行的一种,被广泛应用于计算机视觉领域的图像分类、目标检测和语义分割等任务。

sunxx1's avatar
sunxx1 committed
13
![image-20231120204030674](./images/image-20231120204030674.png)
sunxx1's avatar
sunxx1 committed
14

sunxx1's avatar
sunxx1 committed
15
## 算法原理
sunxx1's avatar
sunxx1 committed
16

sunxx1's avatar
sunxx1 committed
17
DenseNet的核心组件为“Dense Block”,如图所示,由Dense connectivity和Transition Layer组成。每个密集块中包含若干个卷积层和池化层,每个卷积层都会接收前面所有层的输入,并将它们连接到自己的输出上。而过渡层则用于将前面密集块的输出进行降维,减少参数数量。
sunxx1's avatar
sunxx1 committed
18

sunxx1's avatar
sunxx1 committed
19
![image-20231120204212494](./images/image-20231120204212494.png)
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
## 环境配置
sunxx1's avatar
sunxx1 committed
22

sunxx1's avatar
sunxx1 committed
23
### Docker(方法一)
sunxx1's avatar
sunxx1 committed
24

renzhc's avatar
renzhc committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
推荐使用docker方式运行,拉取提供的docker镜像

```shell
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
```

基于拉取的镜像创建容器

```shell
# <your IMAGE ID or NAME>用以上拉取的docker的镜像ID或名称替换
docker run -it --name=densenet121_mmcv --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro <your IMAGE ID> bash
```

克隆并安装git仓库,安装相关依赖

sunxx1's avatar
sunxx1 committed
40
```python
chenzk's avatar
chenzk committed
41
git clone --recursive http://developer.sourcefind.cn/codes/modelzoo/densenet121_mmcv.git
renzhc's avatar
renzhc committed
42
43
cd densenet121_mmcv/mmpretrain-mmcv
pip install -e .
sunxx1's avatar
sunxx1 committed
44
45
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
46

sunxx1's avatar
sunxx1 committed
47
48
### Dockerfile(方法二)

renzhc's avatar
renzhc committed
49
```bash
sunxx1's avatar
sunxx1 committed
50
51
cd densenet121_mmcv/docker
docker build --no-cache -t densenet121_mmcv:latest .
renzhc's avatar
renzhc committed
52
53
54
55
docker run -it --name=efficientnet_b2_mmcv --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro <your IMAGE ID> bash
pip install -e .
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:
# pip install -r requirements.txt
sunxx1's avatar
sunxx1 committed
56
57
58
59
```

### Anaconda(方法三)

chenzk's avatar
chenzk committed
60
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.sourcefind.cn/tool/
sunxx1's avatar
sunxx1 committed
61
62

```plaintext
renzhc's avatar
renzhc committed
63
64
65
66
67
DTK驱动: DTK-24.04.1
python==3.10
torch==2.1.0
torchvision==0.16.0+das1.1.git7d45932.abi1.dtk2404.torch2.1
mmcv==2.0.1+das1.1.gite58da25.abi1.dtk2404.torch2.1.0
sunxx1's avatar
sunxx1 committed
68
69
70
71
72
73
74
75
76
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装

```plaintext
pip install -r requirements.txt
```

sunxx1's avatar
sunxx1 committed
77
## 数据集
sunxx1's avatar
sunxx1 committed
78

renzhc's avatar
renzhc committed
79
### ImageNet
sunxx1's avatar
sunxx1 committed
80

renzhc's avatar
renzhc committed
81
在本项目中可以使用ImageNet数据集。ImageNet数据集官方下载地址:https://image-net.org。
chenzk's avatar
chenzk committed
82
按照以下方式解包:
bailuo's avatar
bailuo committed
83

renzhc's avatar
renzhc committed
84
85
86
87
88
```bash
cd mmpretrain-mmcv/data/imagenet
mkdir train && cd train
tar -xvf ILSVRC2012_img_train.tar
```
bailuo's avatar
bailuo committed
89

renzhc's avatar
renzhc committed
90
91
92
93
94
95
96
97
98
99
解包后是1000个tar文件,每个tar对应了一个类别,分别解包至对应文件夹,可利用如下shell脚本。

```bash
for tarfile in *.tar; do
    dirname="${tarfile%.tar}"
    mkdir "$dirname"
    tar -xvf "$tarfile" -C "$dirname"
done
```

renzhc's avatar
renzhc committed
100
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于imagenet,目录结构如下
sunxx1's avatar
sunxx1 committed
101

sunxx1's avatar
sunxx1 committed
102
```
dcuai's avatar
dcuai committed
103
data
renzhc's avatar
renzhc committed
104
105
106
107
108
109
110
111
└── imagenet
    ├── train
    │   ├── n01440764
    │   │   ├── n01440764_10026.JPEG
    │   │   ├── n01440764_10027.JPEG
    ├──val
    │   ├── n01440764 
    │   │   ├── ILSVRC2012_val_00000293.JPEG
sunxx1's avatar
sunxx1 committed
112
```
sunxx1's avatar
sunxx1 committed
113

renzhc's avatar
renzhc committed
114
115
### Tiny-ImageNet-200

chenzk's avatar
chenzk committed
116
由于ImageNet完整数据集较大,可以使用[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip)进行测试 ,此时需要对配置脚本进行一些修改。可参照mmpretrain-mmcv子仓库中进行设置,其中也提供了使用tiny-imagenet-200数据集进行训练的若干配置脚本。
sunxx1's avatar
sunxx1 committed
117

renzhc's avatar
renzhc committed
118
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于tiny-imagenet,目录结构如下:
sunxx1's avatar
sunxx1 committed
119

renzhc's avatar
renzhc committed
120
121
122
123
124
125
126
127
128
129
```
data
└── imagenet
    ├── test/
    ├── train/
    ├── val/
    ├── wnids.txt
    └── words.txt
```

renzhc's avatar
renzhc committed
130
## 训练
sunxx1's avatar
sunxx1 committed
131

renzhc's avatar
renzhc committed
132
- tiny-imagenet-200
sunxx1's avatar
sunxx1 committed
133

renzhc's avatar
renzhc committed
134
135
136
137
138
```shell
bash tools/dist_train.sh densenet121-test.py  8
```

- imagenet
dcuai's avatar
dcuai committed
139

renzhc's avatar
renzhc committed
140
141
142
```shell
bash tools/dist_train.sh configs/densenet/densenet121_4xb256_in1k.py 8
```
dcuai's avatar
dcuai committed
143

renzhc's avatar
renzhc committed
144
145
146
147
tips:如需其他卡数训练,将命令中的8改为所需卡数即可;如遇端口占用问题,可在tools/dist_train.sh修改端口。

## Result

chenzk's avatar
chenzk committed
148
![img](https://developer.sourcefind.cn/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)
sunxx1's avatar
sunxx1 committed
149

renzhc's avatar
renzhc committed
150
### 精度
sunxx1's avatar
sunxx1 committed
151

renzhc's avatar
renzhc committed
152
测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。
sunxx1's avatar
sunxx1 committed
153

renzhc's avatar
renzhc committed
154
155
156
| 卡数  | 精度                        |
|:---:|:-------------------------:|
| 8   | top1:0.74044;top5:0.91672 |
sunxx1's avatar
sunxx1 committed
157
158
159
160
161
162
163
164
165

## 应用场景

### 算法类别

图像分类

### 热点行业

renzhc's avatar
renzhc committed
166
制造,能源,交通,网安,安防
sunxx1's avatar
sunxx1 committed
167

dcuai's avatar
dcuai committed
168
## 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
169

chenzk's avatar
chenzk committed
170
http://developer.sourcefind.cn/codes/modelzoo/densenet121_mmcv
sunxx1's avatar
sunxx1 committed
171

dcuai's avatar
dcuai committed
172
## 参考资料
sunxx1's avatar
sunxx1 committed
173

dcuai's avatar
dcuai committed
174
https://github.com/open-mmlab/mmpretrain