Commit f88277bb authored by renzhc's avatar renzhc
Browse files

updated readme

parent 59adaf12
......@@ -98,7 +98,7 @@ for tarfile in *.tar; do
done
```
目录结构如下
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于imagenet,目录结构如下
```
data
......@@ -114,47 +114,7 @@ data
### Tiny-ImageNet-200
由于ImageNet完整数据集较大,可以使用[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip)进行测试,可于SCNet快速下载[tiny-imagenet-200-scnet](http://113.200.138.88:18080/aidatasets/project-dependency/tiny-imagenet-200) ,此时需要对配置脚本进行一些修改:
- dataset配置文件(configs/\_\_base\_\_/datasets/{DATASET_CONFIG}.py)中,需要对以下字段进行修改
```python
# dataset settings
dataset_type = 'CustomDataset' # 修改为CustomDataset
data_preprocessor = dict(
num_classes=200, # 修改类别为200
...
)
...
train_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
data_prefix='train', # 改为data_prefix='train',val_dataloader中同理
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
```
- model配置文件(configs/\_\_base\_\_/models/{MODEL_CONFIG}.py)中,同样需要将类别相关的值设置为200。
```python
# model settings
model = dict(
type='ImageClassifier',
...
head=dict(
type='LinearClsHead',
num_classes=200, # 将类别数改为200
...
))
```
本仓库的mmpretrain-mmcv中提供了使用tiny-imagenet-200进行训练的若干配置脚本,可参考进行设置。
## 训练
由于ImageNet完整数据集较大,可以使用[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip)进行测试,可于SCNet快速下载[tiny-imagenet-200-scnet](http://113.200.138.88:18080/aidatasets/project-dependency/tiny-imagenet-200) ,此时需要对配置脚本进行一些修改。可参照mmpretrain-mmcv子仓库中进行设置,其中也提供了使用tiny-imagenet-200数据集进行训练的若干配置脚本。
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于tiny-imagenet,目录结构如下:
......@@ -168,7 +128,7 @@ data
└── words.txt
```
### 单机8卡训练
## 训练
- tiny-imagenet-200
......@@ -182,11 +142,19 @@ bash tools/dist_train.sh densenet121-test.py 8
bash tools/dist_train.sh configs/densenet/densenet121_4xb256_in1k.py 8
```
如需其他卡数训练,将命令中的8改为所需卡数即可;
tips:如需其他卡数训练,将命令中的8改为所需卡数即可;如遇端口占用问题,可在tools/dist_train.sh修改端口。
## Result
![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)
如遇端口占用问题,可在tools/dist_train.sh修改端口。
### 精度
测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。
| 卡数 | 精度 |
|:---:|:-------------------------:|
| 8 | top1:0.74044;top5:0.91672 |
## 应用场景
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment