onnx.cpp 27.5 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
16
#include <migraph/instruction.hpp>
17
#include <migraph/config.hpp>
Paul's avatar
Paul committed
18

Paul's avatar
Paul committed
19
namespace migraph {
20
inline namespace MIGRAPH_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
46
47
48
49
50
51
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
52
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
53
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
54
55
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Paul's avatar
Paul committed
56

57
58
59
60
61
        add_broadcastable_binary_op("Add", op::add{});
        add_broadcastable_binary_op("Div", op::div{});
        add_broadcastable_binary_op("Mul", op::mul{});
        add_broadcastable_binary_op("Sub", op::sub{});
        add_broadcastable_binary_op("Sum", op::add{});
Paul's avatar
Paul committed
62

Khalique's avatar
Khalique committed
63
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
64
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Paul's avatar
Paul committed
65
66
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
67
68
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
69
70
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
71
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
72
73
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
74
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
75
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
76
77
78
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
79
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
80
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
96
97
98
99
    template <class T>
    void add_broadcastable_binary_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
100
101
            if(args.size() != 2)
                MIGRAPH_THROW("binaGry operators should have 2 operands");
102
103
104
105
106
107
108
109
110
111
112
113
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
114
                return prog.add_instruction(x, args);
115
116
117
118
119
120
            }
            else
            {
                // Example:
                // s0 = (3,2,4,5) and s1 = (2,1,1)
                //
Scott Thornton's avatar
Scott Thornton committed
121
122
                // In this case we need to broadcast (:,1,1) portion of
                // s1 plus broadcast the 1st dimension of s1
123
124
125
126
127
128
129
130
131
132
133
134
135
                // giving output_lens = (3,2,4,5)
                //
                // Another example:
                // s0 = (3,2,1,5) and s1 = (2,7,5)
                // In this case we need to broadcast the (:,:,1:,:) axis
                // of s0 plus the 1st dimension of s1 giving
                // output_lens = (3,2,7,5)
                //
                // Get lengths for both arguments
                const std::vector<std::size_t>& s0 = args[0]->get_shape().lens();
                const std::vector<std::size_t>& s1 = args[1]->get_shape().lens();

                // Copy the larger vector to output_lens
Scott Thornton's avatar
Scott Thornton committed
136
137
                std::vector<std::size_t> output_lens = (s0.size() >= s1.size()) ? s0 : s1;
                if(s0.size() >= s1.size())
138
139
140
                {
                    // s0 is bigger, so iterate over the range of s1
                    auto offset = s0.size() - s1.size();
Scott Thornton's avatar
Scott Thornton committed
141
                    for(std::size_t i = 0; i < s1.size(); i++)
142
                    {
Scott Thornton's avatar
Scott Thornton committed
143
                        output_lens[i + offset] = std::max(s0[i + offset], s1[i]);
144
145
146
147
148
149
                    }
                }
                else
                {
                    // s1 is bigger, so iterate over the range of s0
                    auto offset = s1.size() - s0.size();
Scott Thornton's avatar
Scott Thornton committed
150
                    for(std::size_t i = 0; i < s0.size(); i++)
151
                    {
Scott Thornton's avatar
Scott Thornton committed
152
                        output_lens[i + offset] = std::max(s0[i], s1[i + offset]);
153
154
                    }
                }
155
156
157
                auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, args[0]);
                auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, args[1]);
                return prog.add_instruction(x, l0, l1);
158
159
160
161
            }
        });
    }

Paul's avatar
Paul committed
162
    template <class T>
Paul's avatar
Paul committed
163
164
165
166
167
168
169
170
171
172
173
    void add_generic_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
            if(args.size() == 2 and contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
Scott Thornton's avatar
Scott Thornton committed
174
175
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
Paul's avatar
Paul committed
176
177
178
179
180
181
182
                    return prog.add_instruction(x, args[0], l);
                }
            }
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
183
    instruction_ref
Paul's avatar
Paul committed
184
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
185
186
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
187
188
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
189
190
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
191
192
    }

Paul's avatar
Paul committed
193
    instruction_ref
Paul's avatar
Paul committed
194
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
195
    {
196
        op::convolution op;
Paul's avatar
Paul committed
197
198
199
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
200
        }
Paul's avatar
Paul committed
201
202
203
204
205
206
207
208
209
210
211
212
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
213
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
214
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
215
        }
Paul's avatar
Paul committed
216
217
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
218

Paul's avatar
Paul committed
219
220
221
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
222
    {
Khalique's avatar
Khalique committed
223
224
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
225
        {
Khalique's avatar
Khalique committed
226
227
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
228
        }
Paul's avatar
Paul committed
229
230
231
232
233
234
235
236
237
238
239
240
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Paul's avatar
Paul committed
241
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
242
243
    }

Paul's avatar
Paul committed
244
    instruction_ref
Paul's avatar
Paul committed
245
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
246
    {
247
        op::reshape op;
Paul's avatar
Paul committed
248
249
250
251
252
253
254
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
255
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
256
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
257
        }
Paul's avatar
Paul committed
258
259
260
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
261
    instruction_ref
Paul's avatar
Paul committed
262
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
263
264
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
265
266
267
268
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
269
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
270
271
    }

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
290
291
292
293
294
295
296
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
318
319
320
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
321
322
323
324
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
325

Paul's avatar
Paul committed
326
    instruction_ref
Paul's avatar
Paul committed
327
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
350
351
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
352
353
354
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
355
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
356
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
357
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
358
        }
Shucai Xiao's avatar
Shucai Xiao committed
359
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
360
361
    }

362
    instruction_ref
Paul's avatar
Paul committed
363
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
364
    {
Scott Thornton's avatar
Scott Thornton committed
365
366
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
367
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
368
        bool is_test                                      = false;
369
370
371
372
373
374
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
375
            momentum = parse_value(attributes.at("momentum")).at<float>();
376
377
378
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
379
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
380
381
382
        }
        if(contains(attributes, "spatial"))
        {
383
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
384
385
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
386
        }
Paul's avatar
Paul committed
387
        (void)is_test;
Paul's avatar
Paul committed
388
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
389
        return prog.add_instruction(op, std::move(args));
390
391
    }

392
393
394
395
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
396
        float alpha = 0.01; // default alpha val for leaky relu
397
398
399
400
401
402
403
404
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
422

Khalique's avatar
Khalique committed
423
424
425
426
427
428
429
430
431
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
            migraph::literal{migraph::shape{migraph::shape::float_type, {bias.size()}}, bias});

        auto scale_tensor = prog.add_instruction(migraph::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraph::op::mul{}, args.front(), scale_tensor);
        auto bias_bcast   = prog.add_instruction(migraph::op::broadcast{1, input_shape}, bias_vals);
        return prog.add_instruction(migraph::op::add{}, img_scaled, bias_bcast);
    }
Khalique's avatar
Khalique committed
432

Khalique's avatar
Khalique committed
433
434
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
435
436
437
438
439
440
441
442
443
444
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
        return prog.add_instruction(migraph::op::transpose{perm}, args.front());
    }

Paul's avatar
Paul committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
464
465
466
467
468
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
469
470
471
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
472
473
474
475
476
477
478
479
480
481
482
483
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
484
485
486
        }
        for(auto&& p : nodes)
        {
487
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
488
489
490
        }
    }

Paul's avatar
Paul committed
491
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
492
    {
Paul's avatar
Paul committed
493
        if(name.empty())
Paul's avatar
Paul committed
494
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
495
496
497
498
499
500
501
502
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
503
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
504
                    assert(name != iname);
Paul's avatar
Paul committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

534
535
536
537
538
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
Paul's avatar
Paul committed
539
540
541
542
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
543
544
545
546
        }
        return node.name();
    }

Paul's avatar
Paul committed
547
548
549
550
551
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
552
            result[get_name(node)] = node;
Paul's avatar
Paul committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
578
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
579
580
581
582
583
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
584
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
585
586
587
588
589
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
590
591
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
592
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
593
594
595
596
597
598
599
600
601
602
603
604
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
605
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
606
607
608
609
610
611
612
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
613
        }
Paul's avatar
Paul committed
614
615
616
617
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
618
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
619
620
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
621
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
622
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
623
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
624
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
625
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
626
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
627
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
628
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
629
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
630
631
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
632
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
633
634
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
635
636
637
638
639
640
641
642
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
643
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
665
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
666
667
668
669
670
671
672
673
674
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
675
        auto&& tensor_dims = t.tensor_type().shape().dim();
676
677
678
679
680
681
682
683
684
685
686
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

712
} // namespace MIGRAPH_INLINE_NS
Paul's avatar
Paul committed
713
} // namespace migraph