fuse_ops.cpp 36.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
kahmed10's avatar
kahmed10 committed
24
25
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
27
28
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
kahmed10's avatar
kahmed10 committed
29
#include <migraphx/gpu/clip.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/gpu/convolution.hpp>
31
#include <migraphx/gpu/device_name.hpp>
32
#include <migraphx/gpu/oper.hpp>
kahmed10's avatar
kahmed10 committed
33
34
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/mul.hpp>
35
#include <migraphx/gpu/gemm.hpp>
kahmed10's avatar
kahmed10 committed
36
#include <migraphx/gpu/device/layernorm.hpp>
kahmed10's avatar
kahmed10 committed
37
#include <migraphx/gpu/device/gelu.hpp>
Paul's avatar
Paul committed
38
#include <migraphx/gpu/device/mul_add.hpp>
39
40
41
42
43
#include <migraphx/gpu/device/add_clip.hpp>
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/add_tanh.hpp>
#include <migraphx/gpu/device/mul_add_relu.hpp>
Paul's avatar
Paul committed
44
#include <migraphx/gpu/device/add.hpp>
45
46
47
#include <migraphx/match/layernorm.hpp>
#include <migraphx/match/gelu_erf.hpp>
#include <migraphx/match/gelu_tanh.hpp>
Paul's avatar
Paul committed
48
#include <migraphx/instruction.hpp>
49
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
50
#include <migraphx/array.hpp>
51
#include <migraphx/make_op.hpp>
kahmed10's avatar
kahmed10 committed
52
#include <migraphx/op/clip.hpp>
Paul's avatar
Paul committed
53
#include <migraphx/op/contiguous.hpp>
kahmed10's avatar
kahmed10 committed
54
#include <cmath>
55
#include <set>
Paul's avatar
Paul committed
56
57

namespace migraphx {
Paul's avatar
Paul committed
58
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
59
60
namespace gpu {

61
62
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION)

Paul's avatar
Paul committed
63
64
65
66
67
68
69
70
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
71
    template <class T>
Paul's avatar
Paul committed
72
73
74
75
76
77
78
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

79
80
    fusion() = default;

Paul's avatar
Paul committed
81
82
    fusion(const shape& input)
    {
83
        assert(input.standard());
Paul's avatar
Paul committed
84
        auto t = make_tensor(input);
Paul's avatar
Paul committed
85
        fp     = make_fusion_plan(t);
86
        assert(fp);
Paul's avatar
Paul committed
87
88
89
        keep_alive(std::move(t));
    }

90
91
    bool empty() const { return fp == nullptr; }

Paul's avatar
Paul committed
92
93
    op_t operator[](std::size_t i) const
    {
94
        assert(fp);
Paul's avatar
Paul committed
95
96
97
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
98
            MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i));
Paul's avatar
Paul committed
99
100
101
        return result;
    }

102
103
104
105
106
    auto get() const
    {
        assert(fp);
        return fp.get();
    }
Paul's avatar
Paul committed
107
108
109

    op_t create_bias(const shape& bias)
    {
110
        assert(fp);
Paul's avatar
Paul committed
111
        op_t result;
Paul's avatar
Paul committed
112
113
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
114
115
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
116
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
117
118
119
120
121
        return result;
    }

    op_t create_relu()
    {
122
        assert(fp);
Paul's avatar
Paul committed
123
124
125
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
126
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
127
128
129
130
131
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
132
        assert(fp);
Paul's avatar
Paul committed
133
        op_t result;
Paul's avatar
Paul committed
134
135
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
136
137
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
138
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
139
140
        return result;
    }
Paul's avatar
Paul committed
141
142
143

    shape get_workspace(context&)
    {
144
        // assert(fp);
Paul's avatar
Paul committed
145
146
147
148
149
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
150
151
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
152
153
154
        return shape{shape::int8_type, {ws_size}};
    }

155
    bool compile(context& ctx)
Paul's avatar
Paul committed
156
    {
157
        assert(fp);
158
159
        return miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get()) ==
               miopenStatusSuccess;
Paul's avatar
Paul committed
160
161
    }

Paul's avatar
Paul committed
162
163
164
165
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
166
    {
167
        assert(fp);
Paul's avatar
Paul committed
168
169
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
170
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
171
172
173
174
175
176
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
177
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
178
            MIGRAPHX_THROW("Failed to execute fusion plan");
Paul's avatar
Paul committed
179
180
        return y;
    }
Paul's avatar
Paul committed
181
182
};

183
184
185
186
187
188
const std::unordered_set<std::string>& get_supported_archs()
{
    static std::unordered_set<std::string> supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"};
    return supported_archs;
}

Paul's avatar
Paul committed
189
MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
Paul's avatar
Paul committed
190
191
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
192
193
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
194
195
}

Paul's avatar
Paul committed
196
MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
Paul's avatar
Paul committed
197
{
198
    const auto device_name = trim(split_string(get_device_name(), ':').front());
199
200
    if(not contains(get_supported_archs(), device_name))
        return false;
201
202
    if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{}))
        return false;
Paul's avatar
Paul committed
203
204
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
205
206
    if(ins->get_shape().type() != shape::float_type)
        return false;
Paul's avatar
Paul committed
207
208
209
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
Khalique's avatar
Khalique committed
210
    if(conv.op.group > 1)
Khalique's avatar
Khalique committed
211
        return false;
Paul's avatar
Paul committed
212
    if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
Paul's avatar
Paul committed
213
        return false;
214
215
216
217
218
219

    // Do not fuse non-symmetric input
    auto input_lens = ins->inputs().at(0)->get_shape().lens();
    if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
        return false;

Paul's avatar
Paul committed
220
    auto op = conv.op;
221
222
    // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
    if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
223
       wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
224
        return false;
kahmed10's avatar
kahmed10 committed
225
    return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and
226
           contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
Paul's avatar
Paul committed
227
228
}

229
struct hip_triadd : ternary_device<hip_triadd, &device::add>
Paul's avatar
Paul committed
230
231
{
};
232
MIGRAPHX_REGISTER_OP(hip_triadd)
Paul's avatar
Paul committed
233

234
struct hip_triadd_clip : quinary_device<hip_triadd_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
235
236
{
};
237
MIGRAPHX_REGISTER_OP(hip_triadd_clip)
kahmed10's avatar
kahmed10 committed
238

239
struct hip_add_clip : quaternary_device<hip_add_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
240
241
{
};
242
MIGRAPHX_REGISTER_OP(hip_add_clip)
kahmed10's avatar
kahmed10 committed
243

244
struct hip_triadd_relu : ternary_device<hip_triadd_relu, &device::add_relu>
Paul's avatar
Paul committed
245
246
{
};
247
MIGRAPHX_REGISTER_OP(hip_triadd_relu)
Paul's avatar
Paul committed
248

249
250
251
struct hip_triadd_sigmoid : ternary_device<hip_triadd_sigmoid, &device::add_sigmoid>
{
};
252
MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid)
253
254
255
256

struct hip_triadd_tanh : ternary_device<hip_triadd_tanh, &device::add_tanh>
{
};
257
MIGRAPHX_REGISTER_OP(hip_triadd_tanh)
258
259
260
261

struct hip_add_relu : binary_device<hip_add_relu, &device::add_relu>
{
};
262
MIGRAPHX_REGISTER_OP(hip_add_relu)
263
264
265
266

struct hip_add_sigmoid : binary_device<hip_add_relu, &device::add_sigmoid>
{
};
267
MIGRAPHX_REGISTER_OP(hip_add_sigmoid)
268
269

struct hip_add_tanh : binary_device<hip_add_tanh, &device::add_tanh>
Paul's avatar
Paul committed
270
271
{
};
272
MIGRAPHX_REGISTER_OP(hip_add_tanh)
Paul's avatar
Paul committed
273

kahmed10's avatar
kahmed10 committed
274
275
struct hip_layernorm : unary_device<hip_layernorm, &device::layernorm>
{
276
277
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
kahmed10's avatar
kahmed10 committed
278
};
279
MIGRAPHX_REGISTER_OP(hip_layernorm)
kahmed10's avatar
kahmed10 committed
280

Paul Fultz II's avatar
Paul Fultz II committed
281
282
struct hip_triadd_layernorm : ternary_device<hip_triadd_layernorm, &device::triadd_layernorm>
{
283
284
285
286
287
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(4).standard();
        return inputs[0];
    }
Paul Fultz II's avatar
Paul Fultz II committed
288
289
290
291
292
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
};
MIGRAPHX_REGISTER_OP(hip_triadd_layernorm)

kahmed10's avatar
kahmed10 committed
293
294
295
struct hip_gelu : unary_device<hip_gelu, &device::gelu>
{
};
296
MIGRAPHX_REGISTER_OP(hip_gelu)
kahmed10's avatar
kahmed10 committed
297
298
299
300

struct hip_add_gelu : binary_device<hip_add_gelu, &device::add_gelu>
{
};
301
MIGRAPHX_REGISTER_OP(hip_add_gelu)
kahmed10's avatar
kahmed10 committed
302
303
304
305

struct hip_gelu_new : unary_device<hip_gelu_new, &device::gelu_new>
{
};
306
MIGRAPHX_REGISTER_OP(hip_gelu_new)
kahmed10's avatar
kahmed10 committed
307
308
309
310

struct hip_add_gelu_new : binary_device<hip_add_gelu_new, &device::add_gelu_new>
{
};
311
MIGRAPHX_REGISTER_OP(hip_add_gelu_new)
kahmed10's avatar
kahmed10 committed
312

313
struct hip_mul_add : ternary_device<hip_mul_add, &device::mul_add>
Paul's avatar
Paul committed
314
315
{
};
316
MIGRAPHX_REGISTER_OP(hip_mul_add)
Paul's avatar
Paul committed
317

318
struct hip_mul_add_relu : ternary_device<hip_mul_add_relu, &device::mul_add_relu>
Paul's avatar
Paul committed
319
320
{
};
321
MIGRAPHX_REGISTER_OP(hip_mul_add_relu)
Paul's avatar
Paul committed
322

Paul's avatar
Paul committed
323
324
325
void move_broadcasted_back(std::vector<instruction_ref>& args)
{
    // Ensure the last arguments is the broadcasted one
Paul's avatar
Paul committed
326
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
327
328
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); });
Paul's avatar
Paul committed
329
330
    if(it != last)
        std::swap(*it, *std::prev(last));
Paul's avatar
Paul committed
331
332
333
334
335
}

void move_standard_front(std::vector<instruction_ref>& args)
{
    // Ensure the first arguments is the standard one
Paul's avatar
Paul committed
336
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
337
338
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); });
Paul's avatar
Paul committed
339
    if(it != last)
Paul's avatar
Paul committed
340
341
342
        std::swap(*it, args.front());
}

343
344
auto gpu_name(const std::string& s) { return match::name("gpu::" + s); }

kahmed10's avatar
kahmed10 committed
345
346
struct find_layernorm
{
347
    auto matcher() const { return match::layernorm(&gpu_name); }
kahmed10's avatar
kahmed10 committed
348

349
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
350
351
352
353
354
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

355
356
357
358
359
360
361
362
363
        // We dont fuse for non-standard layouts
        if(not x_ins->get_shape().standard())
            return;

        auto relements = x_ins->get_shape().lens().back();

        if(relements > 1024 or (relements % 4 != 0 and relements > 256))
            return;

364
        m.replace_instruction(ins, hip_layernorm{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
365
366
367
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
368
369
370
371
372
373
374
375
struct find_triadd_layernorm
{
    auto matcher() const
    {
        return match::name("gpu::layernorm")(match::arg(0)(match::name("gpu::triadd")(
            match::used_once(), match::all_of[match::inputs()](match::standard_shape()))));
    }

376
    void apply(module& m, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
377
378
379
    {
        auto ins    = r.result;
        auto triadd = ins->inputs().front();
380
        m.replace_instruction(ins, hip_triadd_layernorm{}, triadd->inputs());
Paul Fultz II's avatar
Paul Fultz II committed
381
382
383
    }
};

kahmed10's avatar
kahmed10 committed
384
385
struct find_gelu
{
386
    auto matcher() const { return match::gelu_erf(&gpu_name); }
kahmed10's avatar
kahmed10 committed
387

388
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
389
390
391
392
393
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

394
        m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
395
396
397
398
399
400
401
402
403
404
    }
};

struct find_add_gelu
{
    auto matcher() const
    {
        return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

405
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
406
407
408
409
410
411
412
413
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
414
        m.replace_instruction(ins, hip_add_gelu{}, args);
kahmed10's avatar
kahmed10 committed
415
416
417
418
419
    }
};

struct find_gelu_new
{
kahmed10's avatar
kahmed10 committed
420
    bool fast_math = true;
kahmed10's avatar
kahmed10 committed
421

422
    auto matcher() const { return match::gelu_tanh(&gpu_name); }
kahmed10's avatar
kahmed10 committed
423

424
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
425
426
427
428
429
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

Paul Fultz II's avatar
Paul Fultz II committed
430
        if(fast_math)
431
            m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
Paul Fultz II's avatar
Paul Fultz II committed
432
        else
433
            m.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
434
435
436
437
438
439
440
441
442
443
    }
};

struct find_add_gelu_new
{
    auto matcher() const
    {
        return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

444
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
445
446
447
448
449
450
451
452
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
453
        m.replace_instruction(ins, hip_add_gelu_new{}, args);
kahmed10's avatar
kahmed10 committed
454
455
456
    }
};

kahmed10's avatar
kahmed10 committed
457
458
459
460
461
462
struct find_add_clip
{
    auto matcher() const
    {
        return match::name(std::unordered_set<std::string>{"gpu::clip", "gpu::clipped_relu"})(
            match::arg(0)(match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
463
                                        match::name("gpu::triadd"),
kahmed10's avatar
kahmed10 committed
464
465
466
467
                                        match::any_of[match::inputs()](match::standard_shape()))
                              .bind("add")));
    }

468
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
469
    {
kahmed10's avatar
kahmed10 committed
470
471
472
473
474
475
476
477
478
479
        auto add_ins  = r.instructions["add"];
        auto ins      = r.result;
        auto ins_args = ins->inputs();
        auto add_args = add_ins->inputs();
        move_standard_front(add_args);
        move_broadcasted_back(add_args);

        // Use the allocation from the clip operator
        add_args.pop_back();
        add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end());
kahmed10's avatar
kahmed10 committed
480
        if(add_ins->name() == "gpu::add")
481
            m.replace_instruction(ins, hip_add_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
482
        else if(add_ins->name() == "gpu::triadd")
483
            m.replace_instruction(ins, hip_triadd_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
484
485
486
    }
};

487
struct find_add_unary
Paul's avatar
Paul committed
488
{
489
490
491
    std::string op_name;
    operation binary_add_op;
    operation ternary_add_op;
Paul's avatar
Paul committed
492
493
    auto matcher() const
    {
494
        return match::name(op_name)(match::arg(0)(
Paul's avatar
Paul committed
495
            match::used_once(),
Paul's avatar
Paul committed
496
            match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
497
                          match::name("gpu::triadd"),
Paul's avatar
Paul committed
498
499
500
                          match::any_of(match::name("@literal"),
                                        match::any_of[match::inputs()](match::standard_shape())))
                .bind("add")));
Paul's avatar
Paul committed
501
    }
Paul's avatar
Paul committed
502

503
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
504
    {
Paul's avatar
Paul committed
505
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
506
507
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
508
509
510
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
511
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
512
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
513
        if(add_ins->name() == "gpu::add")
514
            m.replace_instruction(ins, binary_add_op, args);
kahmed10's avatar
kahmed10 committed
515
        else if(add_ins->name() == "gpu::triadd")
516
            m.replace_instruction(ins, ternary_add_op, args);
Paul's avatar
Paul committed
517
518
519
    }
};

Paul's avatar
Paul committed
520
struct find_triadd
Paul's avatar
Paul committed
521
522
523
{
    auto matcher() const
    {
Paul's avatar
Paul committed
524
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
525
            match::name("gpu::add")(match::used_once()).bind("add"),
Paul's avatar
Paul committed
526
527
528
            match::any(match::any_of(match::name("@literal"),
                                     match::any_of[match::inputs()](match::standard_shape())))
                .bind("input")));
Paul's avatar
Paul committed
529
530
    }

531
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
532
    {
Paul's avatar
Paul committed
533
534
535
536
        auto add_ins   = r.instructions["add"];
        auto input_ins = r.instructions["input"];
        auto ins       = r.result;
        auto args      = add_ins->inputs();
537

Paul's avatar
Paul committed
538
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
539
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2)
Paul's avatar
Paul committed
540
541
            return;
        args.insert(args.begin(), input_ins);
Paul's avatar
Paul committed
542
543
544
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
545
        args.back() = ins->inputs().back();
546
        m.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
547
    }
Paul's avatar
Paul committed
548
549
};

Paul's avatar
Paul committed
550
551
552
553
struct find_mul_add
{
    auto matcher() const
    {
Paul's avatar
Paul committed
554
555
        return match::name("gpu::add")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b")));
Paul's avatar
Paul committed
556
557
    }

558
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
559
    {
Paul's avatar
Paul committed
560
561
562
563
        auto mul_ins = r.instructions["mul"];
        auto b_ins   = r.instructions["b"];
        auto ins     = r.result;
        auto args    = mul_ins->inputs();
Paul's avatar
Paul committed
564
565
566
567
568
569
570
        assert(mul_ins != b_ins);

        move_standard_front(args);
        move_broadcasted_back(args);
        args.insert(std::prev(args.end()), b_ins);

        args.back() = ins->inputs().back();
571
        m.replace_instruction(ins, hip_mul_add{}, args);
Paul's avatar
Paul committed
572
573
574
    }
};

Paul's avatar
Paul committed
575
576
577
578
struct find_mul_add_relu
{
    auto matcher() const
    {
Paul's avatar
Paul committed
579
        return match::name("gpu::relu")(
kahmed10's avatar
kahmed10 committed
580
            match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add")));
Paul's avatar
Paul committed
581
582
    }

583
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
584
585
    {
        auto mul_add_ins = r.instructions["mul_add"];
Paul's avatar
Paul committed
586
587
        auto ins         = r.result;
        auto args        = mul_add_ins->inputs();
Paul's avatar
Paul committed
588
589
590

        // Use the allocation from the relu operator
        args.back() = ins->inputs().back();
591
        m.replace_instruction(ins, hip_mul_add_relu{}, args);
Paul's avatar
Paul committed
592
593
594
    }
};

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
struct miopen_fusion
{
    struct fuse_op_data
    {
        operation op;
        float alpha = 1;
        float beta  = 0;
    };
    struct fuse_op : fuse_op_data, reflect_equality<fuse_op>, reflect_stream<fuse_op>
    {
        template <class Self, class F>
        static auto reflect(Self& self, F f)
        {
            return pack(f(self.op, "op"), f(self.alpha, "alpha"), f(self.beta, "beta"));
        }
    };
    std::vector<fuse_op> ops = {};
    fusion f                 = {};
    std::function<void(context&, const fusion&, const std::vector<argument>&)> execute;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.ops, "ops"));
    }

620
621
622
623
624
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    value compile(context& ctx, const shape&, std::vector<shape> inputs)
    {
        // Compensate for allocation
        inputs.pop_back();
        std::size_t i = 0;
        f             = fusion(inputs[i]);
        i++;
        std::vector<std::function<void(const fused_operator_args&, const std::vector<argument>&)>>
            invokers;
        for(auto&& fop : ops)
        {
            if(i > inputs.size())
            {
                f = {};
                return {};
            }
            if(fop.op.name() == "convolution")
            {
                auto* mop = f.create_conv(any_cast<op::convolution>(fop.op), inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsConvForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "add")
            {
                auto* mop = f.create_bias(inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsBiasForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "relu")
            {
                auto* mop = f.create_relu();
                invokers.push_back([=](const fused_operator_args& fargs,
                                       const std::vector<argument>&) {
                    miopenSetOpArgsActivForward(fargs.get(), mop, &fop.alpha, &fop.beta, 0, 0, 0);
                });
            }
            else
            {
                f = {};
                return {};
            }
        }
        if(not f.compile(ctx))
        {
            f = {};
            return {};
        }
        execute = [invokers](context& c, const fusion& ff, const std::vector<argument>& args) {
            auto fargs = make_fused_args();
            for(auto&& invoker : invokers)
                invoker(fargs, args);
            ff.execute(c, fargs, args.front(), args.back());
        };
        return {{"workspace", f.get_workspace(ctx).bytes()}};
    }
    void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
    {
        if(not f.empty())
            return;
        auto v = compile(ctx, output_shape, inputs);
        if(not v.is_object())
            MIGRAPHX_THROW("Failed to compile fusion plan");
    }
    std::string name() const { return "gpu::miopen_fusion"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(ops.empty())
            return {};
        // TODO: Check number of arguments
        return ops.front().op.compute_shape({inputs[0], inputs[1]});
    }
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
    {
        execute(ctx, f, args);
        return args.back();
    }
};
710
MIGRAPHX_REGISTER_OP(miopen_fusion)
711

Paul's avatar
Paul committed
712
713
714
struct miopen_conv_bias
{
    op::convolution op;
715
    fusion fp         = {};
716
717
    fusion::op_t conv = {};
    fusion::op_t bias = {};
Paul's avatar
Paul committed
718

Paul's avatar
Paul committed
719
720
721
722
723
724
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Paul committed
725
726
727
728
729
    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
730
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Paul committed
731
    }
Paul's avatar
Paul committed
732
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
733
    {
Paul's avatar
Paul committed
734
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
735
        float alpha = 1;
Paul's avatar
Paul committed
736
        float beta  = 0;
Paul's avatar
Paul committed
737
738
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
739
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
740
741
    }

742
743
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
744
745
746
747
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        if(not fp.compile(ctx))
748
            MIGRAPHX_THROW("Failed to compile fusion plan");
749
750
    }

751
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
752
753
754
755
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Paul committed
756
};
757
MIGRAPHX_REGISTER_OP(miopen_conv_bias)
Paul's avatar
Paul committed
758

Paul's avatar
Add cbr  
Paul committed
759
760
761
struct miopen_conv_bias_relu
{
    op::convolution op;
762
    fusion fp         = {};
763
764
765
    fusion::op_t conv = {};
    fusion::op_t bias = {};
    fusion::op_t relu = {};
Paul's avatar
Add cbr  
Paul committed
766

Paul's avatar
Paul committed
767
768
769
770
771
772
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Add cbr  
Paul committed
773
774
775
776
777
    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
778
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Add cbr  
Paul committed
779
    }
Paul's avatar
Paul committed
780
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
781
782
    {
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
783
        float alpha = 1;
Paul's avatar
Paul committed
784
        float beta  = 0;
Paul's avatar
Add cbr  
Paul committed
785
786
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
787
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
788
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
789
    }
790
791
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
792
793
794
795
796
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        relu = fp.create_relu();
        fp.compile(ctx);
797
798
    }

799
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
800
801
802
803
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Add cbr  
Paul committed
804
};
805
MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu)
Paul's avatar
Add cbr  
Paul committed
806

Paul's avatar
Paul committed
807
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
808
809
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
810
    return match::name("gpu::add")(
Paul's avatar
Paul committed
811
812
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
813
        ms...);
Paul's avatar
Paul committed
814
815
}

Paul's avatar
Paul committed
816
template <class Op>
817
void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
Paul's avatar
Paul committed
818
819
820
821
822
823
824
825
826
827
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

828
    Op cb{conv_op};
Paul's avatar
Paul committed
829
    // TODO: Insert ws allocation
Paul's avatar
Paul committed
830
    auto ws = cb.get_workspace(ctx);
Paul's avatar
Paul committed
831
    (void)ws;
832
    m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
833
834
}

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
inline auto precompile_name(std::string s) // NOLINT
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(ins->name() != "gpu::precompile_op")
            return false;
        auto op = from_value<operation>(ins->get_operator().to_value().at("op"));
        return (op.name() == s);
    });
}

template <class... Ms>
auto conv_bias_pointwise(Ms... ms)
{
    return precompile_name("pointwise")(
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
        ms...);
}

Paul's avatar
Paul committed
854
struct find_conv_bias
Paul's avatar
Paul committed
855
{
Paul's avatar
Paul committed
856
    context* ctx = nullptr;
Paul's avatar
Paul committed
857
858
    auto matcher() const
    {
kahmed10's avatar
kahmed10 committed
859
860
        return conv_bias(match::none_of(
            match::output(match::name(std::unordered_set<std::string>{"gpu::relu"}))));
Paul's avatar
Paul committed
861
862
    }

863
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
864
    {
865
        apply_conv_bias<miopen_conv_bias>(*ctx, m, r);
Paul's avatar
Paul committed
866
867
868
    }
};

Paul's avatar
Paul committed
869
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
870
871
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
872
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
873

874
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Add cbr  
Paul committed
875
    {
876
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, m, r);
Paul's avatar
Add cbr  
Paul committed
877
878
    }
};
879

880
881
882
883
884
885
886
887
888
889
890
struct find_conv_pointwise
{
    context* ctx = nullptr;
    auto matcher() const
    {
        return precompile_name("pointwise")(
            match::nargs(3),
            match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                    fusable_conv(match::used_once()).bind("conv")));
    }

891
    void apply(module& m, const match::matcher_result& r) const
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
    {
        auto conv_ins    = r.instructions["conv"];
        auto bias_ins    = r.instructions["bias"];
        auto ins         = r.result;
        auto input_ins   = conv_ins->inputs().at(0);
        auto weights_ins = conv_ins->inputs().at(1);
        auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto alloc_ins   = ins->inputs().back();

        module_ref pm = ins->module_inputs().front();

        miopen_fusion op{};
        op.ops.push_back({{conv_op}});
        for(auto&& i : *pm)
        {
            if(i.name()[0] == '@')
                continue;
            op.ops.push_back({{i.get_operator()}});
        }
        std::vector<instruction_ref> inputs = {input_ins, weights_ins, bias_ins, alloc_ins};
        auto v                              = op.compile(*ctx, ins->get_shape(), to_shapes(inputs));
        if(not v.is_object())
            return;
        m.replace_instruction(ins, op, inputs);
    }
};

919
920
921
922
923
924
925
926
927
928
struct find_gemm_add
{
    auto matcher() const
    {
        return match::name("gpu::add")(
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

929
    void apply(module& m, const match::matcher_result& r) const
930
931
932
933
934
935
936
937
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
938
        if(not float_equal(gemm.beta, 0))
939
940
941
942
943
944
945
946
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
947
        if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
948
        {
949
            copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
950
951
952
953
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

954
        gemm.beta = 1;
955
        m.replace_instruction(ins, gemm, inputs);
956
957
958
    }
};

959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
auto pointwise_name(const std::string& s)
{
    return precompile_name("pointwise")(match::make_basic_pred_matcher([=](auto ins) {
        module_ref pm = ins->module_inputs().front();
        auto n = std::count_if(pm->begin(), pm->end(), [&](auto& i) { return i.name() == s; });
        if(n != 1)
            return false;
        return std::all_of(pm->begin(), pm->end(), [&](auto& i) {
            return starts_with(i.name(), "@") or i.name() == s;
        });
    }));
}

struct find_gemm_pointwise
{
    auto matcher() const
    {
Paul's avatar
Paul committed
976
        return precompile_name("pointwise")(
977
            match::nargs(3),
Paul's avatar
Format  
Paul committed
978
            match::either_arg(0, 1)(
Paul's avatar
Paul committed
979
                match::any_of(match::standard_shape(), match::is_constant()).bind("c"),
Paul's avatar
Format  
Paul committed
980
                match::name("gpu::gemm")(match::nargs(3), match::used_once()).bind("gemm")));
981
982
    }

Paul's avatar
Paul committed
983
984
985
986
    // TODO: Move to matcher.hpp
    static auto match_param(const std::string& name)
    {
        return match::make_basic_pred_matcher([=](auto ins) {
Paul's avatar
Format  
Paul committed
987
            if(ins->name() != "@param")
Paul's avatar
Paul committed
988
989
990
991
992
993
                return false;
            auto p = any_cast<builtin::param>(ins->get_operator());
            return p.parameter == name;
        });
    }

Paul's avatar
Format  
Paul committed
994
    template <class M>
Paul's avatar
Paul committed
995
996
    static auto match_mul_const(M m, const std::string& var)
    {
Paul's avatar
Format  
Paul committed
997
998
        return match::name("mul")(match::either_arg(0, 1)(match::name("@literal").bind(var), m))
            .bind(var + "_mul");
Paul's avatar
Paul committed
999
1000
1001
1002
    }

    static auto match_add(const std::string& input, const std::string& output)
    {
Paul's avatar
Format  
Paul committed
1003
1004
1005
1006
1007
1008
        auto param     = match::name("@param");
        auto add       = match::name("add")(match::args(param, param));
        auto inner_mul = match::any_of(match_mul_const(match_param(input), "alpha"),
                                       match_mul_const(match_param(output), "beta"));
        auto mul_add   = match::name("add")(match::either_arg(0, 1)(inner_mul, param));
        auto add_mul   = match_mul_const(add, "gamma");
Paul's avatar
Paul committed
1009
1010
1011
        return match::name("@return")(match::args(match::any_of(add, mul_add, add_mul)));
    }

Paul's avatar
Format  
Paul committed
1012
    static float get_float(instruction_ref ins) { return ins->get_literal().at<float>(); }
Paul's avatar
Paul committed
1013

Paul's avatar
Format  
Paul committed
1014
    template <class Gemm>
Paul's avatar
Paul committed
1015
1016
1017
1018
1019
1020
1021
    static bool update_gemm(Gemm& gemm, module_ref pm, unsigned input)
    {
        auto names = pm->get_parameter_names();
        if(names.size() != 2)
            return false;
        std::sort(names.begin(), names.end());
        unsigned output = input == 0 ? 1 : 0;
Paul's avatar
Format  
Paul committed
1022
1023
1024
        auto mr         = match::match_instruction(
            *pm, std::prev(pm->end()), match_add(names[input], names[output]));
        if(mr.result == pm->end())
Paul's avatar
Paul committed
1025
            return false;
Paul's avatar
Format  
Paul committed
1026
        if(contains(mr.instructions, "alpha_mul"))
Paul's avatar
Paul committed
1027
            gemm.alpha *= get_float(mr.instructions["alpha"]);
Paul's avatar
Format  
Paul committed
1028
        else if(contains(mr.instructions, "beta_mul"))
Paul's avatar
Paul committed
1029
            gemm.beta *= get_float(mr.instructions["beta"]);
Paul's avatar
Format  
Paul committed
1030
        else if(contains(mr.instructions, "gamma_mul"))
Paul's avatar
Paul committed
1031
1032
1033
1034
1035
1036
1037
        {
            gemm.alpha *= get_float(mr.instructions["gamma"]);
            gemm.beta *= get_float(mr.instructions["gamma"]);
        }
        return true;
    }

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
        if(not float_equal(gemm.beta, 0))
            return;
Paul's avatar
Paul committed
1049
1050
        gemm.beta = 1;

Paul's avatar
Format  
Paul committed
1051
1052
        if(not update_gemm(
               gemm, ins->module_inputs().front(), ins->inputs().front() == gemm_ins ? 0 : 1))
Paul's avatar
Paul committed
1053
            return;
1054

Paul's avatar
Paul committed
1055
1056
1057
1058
1059
1060
1061
1062
        // const-fold input if not standard shape since rocblas can't handle it
        if (not c_ins->get_shape().standard())
        {
            auto c      = op::contiguous{};
            auto l = c.compute(c.compute_shape({c_ins->get_shape()}), {c_ins->eval()});
            c_ins = m.add_literal(l.get_shape(), l.data());
        }

1063
1064
1065
1066
        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        inputs.push_back(c_ins);
1067
        inputs.push_back(ins->inputs().back());
1068
1069
1070
1071
1072

        m.replace_instruction(ins, gemm, inputs);
    }
};

1073
1074
1075
1076
1077
1078
1079
struct find_commutative_broadcast
{
    auto matcher() const
    {
        return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape()));
    }

1080
    void apply(module& m, const match::matcher_result& r) const
1081
1082
1083
1084
1085
    {
        auto ins  = r.result;
        auto args = ins->inputs();
        move_broadcasted_back(args);

1086
        m.replace_instruction(ins, ins->get_operator(), args);
1087
1088
1089
    }
};

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
struct find_contiguous
{
    auto matcher() const { return match::name("gpu::contiguous"); }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;

        m.replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(make_op("contiguous"))}}),
            ins->inputs());
    }
};

struct find_contiguous_pointwise
{
    auto matcher() const
    {
        return match::name("gpu::contiguous")(match::arg(0)(precompile_name("pointwise")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins    = r.result;
        auto pw     = ins->inputs().front();
        auto alloc  = ins->inputs().back();
        auto args   = pw->inputs();
        args.back() = alloc;

        m.replace_instruction(ins, pw->get_operator(), args, pw->module_inputs());
    }
};

1124
void fuse_ops::apply(module& m) const
Paul's avatar
Paul committed
1125
{
1126
    match::find_matches(m, find_contiguous_pointwise{}, find_gelu{}, find_gelu_new{fast_math});
1127
1128
1129
    run_passes(m, {dead_code_elimination{}});
    match::find_matches(m, find_triadd{});
    match::find_matches(m,
kahmed10's avatar
kahmed10 committed
1130
                        find_layernorm{},
1131
                        find_conv_pointwise{ctx},
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
                        find_conv_bias_relu{ctx},
                        find_conv_bias{ctx},
                        find_add_gelu{},
                        find_add_gelu_new{},
                        find_mul_add{},
                        find_mul_add_relu{},
                        find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}},
                        find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}},
                        find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}},
                        find_add_clip{});
1142
    run_passes(m, {dead_code_elimination{}});
1143
1144
1145
1146
1147
    match::find_matches(m,
                        find_triadd_layernorm{},
                        find_gemm_add{},
                        find_gemm_pointwise{},
                        find_commutative_broadcast{});
1148
    match::find_matches(m, find_contiguous{});
Paul's avatar
Paul committed
1149
}
Paul's avatar
Paul committed
1150
1151

} // namespace gpu
Paul's avatar
Paul committed
1152
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1153
} // namespace migraphx