fuse_ops.cpp 6.91 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraph/gpu/fuse_ops.hpp>
Paul's avatar
Paul committed
2
#include <migraph/matcher.hpp>
Paul's avatar
Paul committed
3
4
#include <migraph/gpu/miopen.hpp>
#include <migraph/gpu/convolution.hpp>
Paul's avatar
Paul committed
5
6
7
8
9
10
11
#include <migraph/gpu/device/add_relu.hpp>
#include <migraph/instruction.hpp>

namespace migraph {

namespace gpu {

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
20
    template <class T>
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

    fusion(const shape& input)
    // : fp(make_fusion_plan(input))
    {
        auto t = make_tensor(input);
Paul's avatar
Paul committed
32
        fp     = make_fusion_plan(t);
Paul's avatar
Paul committed
33
34
35
36
37
38
39
40
41
42
43
44
        keep_alive(std::move(t));
    }

    op_t operator[](std::size_t i) const
    {
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Failed retrieving operator at " + std::to_string(i));
        return result;
    }

Paul's avatar
Paul committed
45
    auto get() const { return fp.get(); }
Paul's avatar
Paul committed
46
47
48
49

    op_t create_bias(const shape& bias)
    {
        op_t result;
Paul's avatar
Paul committed
50
51
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Creating operator failed");
        return result;
    }

    op_t create_relu()
    {
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Creating operator failed");
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
        op_t result;
Paul's avatar
Paul committed
70
71
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
72
73
74
75
76
77
78
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Creating operator failed");
        return result;
    }
};

Paul's avatar
Paul committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
MIGRAPH_PRED_MATCHER(bias_shape, instruction_ref ins)
{
    auto&& s = ins->get_shape();
    return s.broadcasted() and 
        s.strides().size() == 4 and 
        s.strides()[0] == 0 and
        s.strides()[1] != 0 and
        s.strides()[2] == 0 and
        s.strides()[3] == 0;
}

// TODO: Move to another header
template<class T, class... Ts>
std::array<T, sizeof...(Ts)+1> make_array(T x, Ts... xs)
{
    return {std::move(x), std::move(static_cast<T>(xs))...};
} 

MIGRAPH_PRED_MATCHER(fusable_conv, instruction_ref ins)
{
    if(ins->name() != "gpu::convolution")
        return false;
    auto op = any_cast<miopen_convolution>(ins->get_operator()).op;
    return op.padding == make_array<size_t>(0, 0) and
        op.stride == make_array<size_t>(1, 1) and
        op.dilation == make_array<size_t>(1, 1);
}

Paul's avatar
Paul committed
107
108
109
110
111
struct hip_add_relu
{
    std::string name() const { return "hip::add_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Paul's avatar
Paul committed
112
        check_shapes{inputs, *this}.has(3);
Paul's avatar
Paul committed
113
114
        return inputs.front();
    }
Paul's avatar
Paul committed
115
    argument compute(context&, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
116
    {
117
        device::add_relu(args.at(2), args.at(0), args.at(1));
Paul's avatar
Paul committed
118
119
120
121
        return args.at(2);
    }
};

Paul's avatar
Paul committed
122
struct match_add_relu
Paul's avatar
Paul committed
123
{
Paul's avatar
Paul committed
124
125
    auto matcher() const
    {
Paul's avatar
Paul committed
126
        return match::name("gpu::relu")(match::arg(0)(match::name("gpu::add").bind("add")));
Paul's avatar
Paul committed
127
    }
Paul's avatar
Paul committed
128

Paul's avatar
Paul committed
129
130
    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
131
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
132
133
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
134
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
135
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
136
        p.replace_instruction(ins, hip_add_relu{}, args);
Paul's avatar
Paul committed
137
    }
Paul's avatar
Paul committed
138
139
};

Paul's avatar
Paul committed
140
141
142
143
144
145
146
struct miopen_conv_bias
{
    op::convolution op;
    fusion f;
    fusion::op_t conv;
    fusion::op_t bias;

Paul's avatar
Paul committed
147
    miopen_conv_bias(op::convolution c, shape input, shape weights, shape b) : op(c), f(input)
Paul's avatar
Paul committed
148
149
150
151
152
153
154
155
156
157
158
159
    {
        f.create_conv(op, weights);
        f.create_bias(b);
    }

    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
        return op.compute_shape({inputs.at(0), inputs.at(1)});
    }
Paul's avatar
Paul committed
160
161
    argument
    compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
162
    {
Paul's avatar
Paul committed
163
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
164
165
166
167
168
        float alpha = 1, beta = 0;
        auto x = make_tensor(args[0].get_shape());
        auto y = make_tensor(output_shape);
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
169
170
171
172
173
174
175
        miopenExecuteFusionPlan(ctx.handle.get(),
                                f.get(),
                                x.get(),
                                args[0].implicit(),
                                y.get(),
                                args[4].implicit(),
                                fargs.get());
Paul's avatar
Paul committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        return args.at(4);
    }

    shape compile(context& ctx)
    {
        int algo_count = 1;
        miopenConvFwdAlgorithm_t algo;
        miopenFusionPlanConvolutionGetAlgo(f.get(), 1, &algo_count, &algo);
        std::size_t ws_size = 0;
        miopenFusionPlanGetWorkSpaceSize(ctx.handle.get(), f.get(), &ws_size, algo);
        auto status = miopenCompileFusionPlan(ctx.handle.get(), f.get());
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Compiling fusion plan failed");
        return shape{shape::int8_type, {ws_size}};
    }
};

struct match_conv_bias
{
Paul's avatar
Paul committed
195
    context* ctx = nullptr;
Paul's avatar
Paul committed
196
197
    auto matcher() const
    {
Paul's avatar
Paul committed
198
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
199
            bias_shape().bind("bias"), fusable_conv().bind("conv")));
Paul's avatar
Paul committed
200
201
202
203
    }

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
204
205
        auto conv_ins    = r.instructions["conv"];
        auto bias_ins    = r.instructions["bias"];
Paul's avatar
Paul committed
206
        auto ins         = r.result;
Paul's avatar
Paul committed
207
        auto input_ins   = conv_ins->inputs().at(0);
Paul's avatar
Paul committed
208
        auto weights_ins = conv_ins->inputs().at(1);
Paul's avatar
Paul committed
209
210
211
        auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto alloc_ins   = ins->inputs().back();
        auto old_ws_ins  = conv_ins->inputs().at(2);
Paul's avatar
Paul committed
212

Paul's avatar
Paul committed
213
214
        miopen_conv_bias cb{
            conv_op, input_ins->get_shape(), weights_ins->get_shape(), bias_ins->get_shape()};
Paul's avatar
Paul committed
215
        // TODO: Insert ws allocation
Paul's avatar
Paul committed
216
        auto ws = cb.compile(*ctx);
Paul's avatar
Paul committed
217
218
219
220
221

        p.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
    }
};

Paul's avatar
Paul committed
222
223
224
void fuse_ops::apply(program& p) const
{
    match::find_matches(p, match_add_relu{}, match_conv_bias{ctx});
Paul's avatar
Paul committed
225
}
Paul's avatar
Paul committed
226
227
228
229

} // namespace gpu

} // namespace migraph