fuse_ops.cpp 36.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
kahmed10's avatar
kahmed10 committed
24
25
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
27
28
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
kahmed10's avatar
kahmed10 committed
29
#include <migraphx/gpu/clip.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/gpu/convolution.hpp>
31
#include <migraphx/gpu/device_name.hpp>
32
#include <migraphx/gpu/oper.hpp>
kahmed10's avatar
kahmed10 committed
33
34
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/mul.hpp>
35
#include <migraphx/gpu/gemm.hpp>
kahmed10's avatar
kahmed10 committed
36
#include <migraphx/gpu/device/layernorm.hpp>
kahmed10's avatar
kahmed10 committed
37
#include <migraphx/gpu/device/gelu.hpp>
Paul's avatar
Paul committed
38
#include <migraphx/gpu/device/mul_add.hpp>
39
40
41
42
43
#include <migraphx/gpu/device/add_clip.hpp>
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/add_tanh.hpp>
#include <migraphx/gpu/device/mul_add_relu.hpp>
Paul's avatar
Paul committed
44
#include <migraphx/gpu/device/add.hpp>
45
46
47
#include <migraphx/match/layernorm.hpp>
#include <migraphx/match/gelu_erf.hpp>
#include <migraphx/match/gelu_tanh.hpp>
Paul's avatar
Paul committed
48
#include <migraphx/instruction.hpp>
49
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
50
#include <migraphx/array.hpp>
51
#include <migraphx/make_op.hpp>
kahmed10's avatar
kahmed10 committed
52
#include <migraphx/op/clip.hpp>
kahmed10's avatar
kahmed10 committed
53
#include <cmath>
54
#include <set>
Paul's avatar
Paul committed
55
56

namespace migraphx {
Paul's avatar
Paul committed
57
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
58
59
namespace gpu {

60
61
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION)

Paul's avatar
Paul committed
62
63
64
65
66
67
68
69
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
70
    template <class T>
Paul's avatar
Paul committed
71
72
73
74
75
76
77
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

78
79
    fusion() = default;

Paul's avatar
Paul committed
80
81
    fusion(const shape& input)
    {
82
        assert(input.standard());
Paul's avatar
Paul committed
83
        auto t = make_tensor(input);
Paul's avatar
Paul committed
84
        fp     = make_fusion_plan(t);
85
        assert(fp);
Paul's avatar
Paul committed
86
87
88
        keep_alive(std::move(t));
    }

89
90
    bool empty() const { return fp == nullptr; }

Paul's avatar
Paul committed
91
92
    op_t operator[](std::size_t i) const
    {
93
        assert(fp);
Paul's avatar
Paul committed
94
95
96
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
97
            MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i));
Paul's avatar
Paul committed
98
99
100
        return result;
    }

101
102
103
104
105
    auto get() const
    {
        assert(fp);
        return fp.get();
    }
Paul's avatar
Paul committed
106
107
108

    op_t create_bias(const shape& bias)
    {
109
        assert(fp);
Paul's avatar
Paul committed
110
        op_t result;
Paul's avatar
Paul committed
111
112
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
113
114
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
115
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
116
117
118
119
120
        return result;
    }

    op_t create_relu()
    {
121
        assert(fp);
Paul's avatar
Paul committed
122
123
124
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
125
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
126
127
128
129
130
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
131
        assert(fp);
Paul's avatar
Paul committed
132
        op_t result;
Paul's avatar
Paul committed
133
134
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
135
136
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
137
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
138
139
        return result;
    }
Paul's avatar
Paul committed
140
141
142

    shape get_workspace(context&)
    {
143
        // assert(fp);
Paul's avatar
Paul committed
144
145
146
147
148
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
149
150
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
151
152
153
        return shape{shape::int8_type, {ws_size}};
    }

154
    bool compile(context& ctx)
Paul's avatar
Paul committed
155
    {
156
        assert(fp);
157
158
        return miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get()) ==
               miopenStatusSuccess;
Paul's avatar
Paul committed
159
160
    }

Paul's avatar
Paul committed
161
162
163
164
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
165
    {
166
        assert(fp);
Paul's avatar
Paul committed
167
168
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
169
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
170
171
172
173
174
175
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
176
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
177
            MIGRAPHX_THROW("Failed to execute fusion plan");
Paul's avatar
Paul committed
178
179
        return y;
    }
Paul's avatar
Paul committed
180
181
};

182
183
184
185
186
187
const std::unordered_set<std::string>& get_supported_archs()
{
    static std::unordered_set<std::string> supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"};
    return supported_archs;
}

Paul's avatar
Paul committed
188
MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
Paul's avatar
Paul committed
189
190
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
191
192
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
193
194
}

Paul's avatar
Paul committed
195
MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
Paul's avatar
Paul committed
196
{
197
    const auto device_name = trim(split_string(get_device_name(), ':').front());
198
199
    if(not contains(get_supported_archs(), device_name))
        return false;
200
201
    if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{}))
        return false;
Paul's avatar
Paul committed
202
203
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
204
205
    if(ins->get_shape().type() != shape::float_type)
        return false;
Paul's avatar
Paul committed
206
207
208
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
Khalique's avatar
Khalique committed
209
    if(conv.op.group > 1)
Khalique's avatar
Khalique committed
210
        return false;
Paul's avatar
Paul committed
211
    if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
Paul's avatar
Paul committed
212
        return false;
213
214
215
216
217
218

    // Do not fuse non-symmetric input
    auto input_lens = ins->inputs().at(0)->get_shape().lens();
    if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
        return false;

Paul's avatar
Paul committed
219
    auto op = conv.op;
220
221
    // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
    if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
222
       wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
223
        return false;
kahmed10's avatar
kahmed10 committed
224
    return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and
225
           contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
Paul's avatar
Paul committed
226
227
}

228
struct hip_triadd : ternary_device<hip_triadd, &device::add>
Paul's avatar
Paul committed
229
230
{
};
231
MIGRAPHX_REGISTER_OP(hip_triadd)
Paul's avatar
Paul committed
232

233
struct hip_triadd_clip : quinary_device<hip_triadd_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
234
235
{
};
236
MIGRAPHX_REGISTER_OP(hip_triadd_clip)
kahmed10's avatar
kahmed10 committed
237

238
struct hip_add_clip : quaternary_device<hip_add_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
239
240
{
};
241
MIGRAPHX_REGISTER_OP(hip_add_clip)
kahmed10's avatar
kahmed10 committed
242

243
struct hip_triadd_relu : ternary_device<hip_triadd_relu, &device::add_relu>
Paul's avatar
Paul committed
244
245
{
};
246
MIGRAPHX_REGISTER_OP(hip_triadd_relu)
Paul's avatar
Paul committed
247

248
249
250
struct hip_triadd_sigmoid : ternary_device<hip_triadd_sigmoid, &device::add_sigmoid>
{
};
251
MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid)
252
253
254
255

struct hip_triadd_tanh : ternary_device<hip_triadd_tanh, &device::add_tanh>
{
};
256
MIGRAPHX_REGISTER_OP(hip_triadd_tanh)
257
258
259
260

struct hip_add_relu : binary_device<hip_add_relu, &device::add_relu>
{
};
261
MIGRAPHX_REGISTER_OP(hip_add_relu)
262
263
264
265

struct hip_add_sigmoid : binary_device<hip_add_relu, &device::add_sigmoid>
{
};
266
MIGRAPHX_REGISTER_OP(hip_add_sigmoid)
267
268

struct hip_add_tanh : binary_device<hip_add_tanh, &device::add_tanh>
Paul's avatar
Paul committed
269
270
{
};
271
MIGRAPHX_REGISTER_OP(hip_add_tanh)
Paul's avatar
Paul committed
272

kahmed10's avatar
kahmed10 committed
273
274
struct hip_layernorm : unary_device<hip_layernorm, &device::layernorm>
{
275
276
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
kahmed10's avatar
kahmed10 committed
277
};
278
MIGRAPHX_REGISTER_OP(hip_layernorm)
kahmed10's avatar
kahmed10 committed
279

Paul Fultz II's avatar
Paul Fultz II committed
280
281
struct hip_triadd_layernorm : ternary_device<hip_triadd_layernorm, &device::triadd_layernorm>
{
282
283
284
285
286
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(4).standard();
        return inputs[0];
    }
Paul Fultz II's avatar
Paul Fultz II committed
287
288
289
290
291
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
};
MIGRAPHX_REGISTER_OP(hip_triadd_layernorm)

kahmed10's avatar
kahmed10 committed
292
293
294
struct hip_gelu : unary_device<hip_gelu, &device::gelu>
{
};
295
MIGRAPHX_REGISTER_OP(hip_gelu)
kahmed10's avatar
kahmed10 committed
296
297
298
299

struct hip_add_gelu : binary_device<hip_add_gelu, &device::add_gelu>
{
};
300
MIGRAPHX_REGISTER_OP(hip_add_gelu)
kahmed10's avatar
kahmed10 committed
301
302
303
304

struct hip_gelu_new : unary_device<hip_gelu_new, &device::gelu_new>
{
};
305
MIGRAPHX_REGISTER_OP(hip_gelu_new)
kahmed10's avatar
kahmed10 committed
306
307
308
309

struct hip_add_gelu_new : binary_device<hip_add_gelu_new, &device::add_gelu_new>
{
};
310
MIGRAPHX_REGISTER_OP(hip_add_gelu_new)
kahmed10's avatar
kahmed10 committed
311

312
struct hip_mul_add : ternary_device<hip_mul_add, &device::mul_add>
Paul's avatar
Paul committed
313
314
{
};
315
MIGRAPHX_REGISTER_OP(hip_mul_add)
Paul's avatar
Paul committed
316

317
struct hip_mul_add_relu : ternary_device<hip_mul_add_relu, &device::mul_add_relu>
Paul's avatar
Paul committed
318
319
{
};
320
MIGRAPHX_REGISTER_OP(hip_mul_add_relu)
Paul's avatar
Paul committed
321

Paul's avatar
Paul committed
322
323
324
void move_broadcasted_back(std::vector<instruction_ref>& args)
{
    // Ensure the last arguments is the broadcasted one
Paul's avatar
Paul committed
325
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
326
327
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); });
Paul's avatar
Paul committed
328
329
    if(it != last)
        std::swap(*it, *std::prev(last));
Paul's avatar
Paul committed
330
331
332
333
334
}

void move_standard_front(std::vector<instruction_ref>& args)
{
    // Ensure the first arguments is the standard one
Paul's avatar
Paul committed
335
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
336
337
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); });
Paul's avatar
Paul committed
338
    if(it != last)
Paul's avatar
Paul committed
339
340
341
        std::swap(*it, args.front());
}

342
343
auto gpu_name(const std::string& s) { return match::name("gpu::" + s); }

kahmed10's avatar
kahmed10 committed
344
345
struct find_layernorm
{
346
    auto matcher() const { return match::layernorm(&gpu_name); }
kahmed10's avatar
kahmed10 committed
347

348
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
349
350
351
352
353
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

354
355
356
357
358
359
360
361
362
        // We dont fuse for non-standard layouts
        if(not x_ins->get_shape().standard())
            return;

        auto relements = x_ins->get_shape().lens().back();

        if(relements > 1024 or (relements % 4 != 0 and relements > 256))
            return;

363
        m.replace_instruction(ins, hip_layernorm{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
364
365
366
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
367
368
369
370
371
372
373
374
struct find_triadd_layernorm
{
    auto matcher() const
    {
        return match::name("gpu::layernorm")(match::arg(0)(match::name("gpu::triadd")(
            match::used_once(), match::all_of[match::inputs()](match::standard_shape()))));
    }

375
    void apply(module& m, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
376
377
378
    {
        auto ins    = r.result;
        auto triadd = ins->inputs().front();
379
        m.replace_instruction(ins, hip_triadd_layernorm{}, triadd->inputs());
Paul Fultz II's avatar
Paul Fultz II committed
380
381
382
    }
};

kahmed10's avatar
kahmed10 committed
383
384
struct find_gelu
{
385
    auto matcher() const { return match::gelu_erf(&gpu_name); }
kahmed10's avatar
kahmed10 committed
386

387
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
388
389
390
391
392
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

393
        m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
394
395
396
397
398
399
400
401
402
403
    }
};

struct find_add_gelu
{
    auto matcher() const
    {
        return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

404
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
405
406
407
408
409
410
411
412
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
413
        m.replace_instruction(ins, hip_add_gelu{}, args);
kahmed10's avatar
kahmed10 committed
414
415
416
417
418
    }
};

struct find_gelu_new
{
kahmed10's avatar
kahmed10 committed
419
    bool fast_math = true;
kahmed10's avatar
kahmed10 committed
420

421
    auto matcher() const { return match::gelu_tanh(&gpu_name); }
kahmed10's avatar
kahmed10 committed
422

423
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
424
425
426
427
428
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

Paul Fultz II's avatar
Paul Fultz II committed
429
        if(fast_math)
430
            m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
Paul Fultz II's avatar
Paul Fultz II committed
431
        else
432
            m.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
433
434
435
436
437
438
439
440
441
442
    }
};

struct find_add_gelu_new
{
    auto matcher() const
    {
        return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

443
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
444
445
446
447
448
449
450
451
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
452
        m.replace_instruction(ins, hip_add_gelu_new{}, args);
kahmed10's avatar
kahmed10 committed
453
454
455
    }
};

kahmed10's avatar
kahmed10 committed
456
457
458
459
460
461
struct find_add_clip
{
    auto matcher() const
    {
        return match::name(std::unordered_set<std::string>{"gpu::clip", "gpu::clipped_relu"})(
            match::arg(0)(match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
462
                                        match::name("gpu::triadd"),
kahmed10's avatar
kahmed10 committed
463
464
465
466
                                        match::any_of[match::inputs()](match::standard_shape()))
                              .bind("add")));
    }

467
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
468
    {
kahmed10's avatar
kahmed10 committed
469
470
471
472
473
474
475
476
477
478
        auto add_ins  = r.instructions["add"];
        auto ins      = r.result;
        auto ins_args = ins->inputs();
        auto add_args = add_ins->inputs();
        move_standard_front(add_args);
        move_broadcasted_back(add_args);

        // Use the allocation from the clip operator
        add_args.pop_back();
        add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end());
kahmed10's avatar
kahmed10 committed
479
        if(add_ins->name() == "gpu::add")
480
            m.replace_instruction(ins, hip_add_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
481
        else if(add_ins->name() == "gpu::triadd")
482
            m.replace_instruction(ins, hip_triadd_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
483
484
485
    }
};

486
struct find_add_unary
Paul's avatar
Paul committed
487
{
488
489
490
    std::string op_name;
    operation binary_add_op;
    operation ternary_add_op;
Paul's avatar
Paul committed
491
492
    auto matcher() const
    {
493
        return match::name(op_name)(match::arg(0)(
Paul's avatar
Paul committed
494
            match::used_once(),
Paul's avatar
Paul committed
495
            match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
496
                          match::name("gpu::triadd"),
Paul's avatar
Paul committed
497
498
499
                          match::any_of(match::name("@literal"),
                                        match::any_of[match::inputs()](match::standard_shape())))
                .bind("add")));
Paul's avatar
Paul committed
500
    }
Paul's avatar
Paul committed
501

502
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
503
    {
Paul's avatar
Paul committed
504
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
505
506
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
507
508
509
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
510
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
511
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
512
        if(add_ins->name() == "gpu::add")
513
            m.replace_instruction(ins, binary_add_op, args);
kahmed10's avatar
kahmed10 committed
514
        else if(add_ins->name() == "gpu::triadd")
515
            m.replace_instruction(ins, ternary_add_op, args);
Paul's avatar
Paul committed
516
517
518
    }
};

Paul's avatar
Paul committed
519
struct find_triadd
Paul's avatar
Paul committed
520
521
522
{
    auto matcher() const
    {
Paul's avatar
Paul committed
523
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
524
            match::name("gpu::add")(match::used_once()).bind("add"),
Paul's avatar
Paul committed
525
526
527
            match::any(match::any_of(match::name("@literal"),
                                     match::any_of[match::inputs()](match::standard_shape())))
                .bind("input")));
Paul's avatar
Paul committed
528
529
    }

530
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
531
    {
Paul's avatar
Paul committed
532
533
534
535
        auto add_ins   = r.instructions["add"];
        auto input_ins = r.instructions["input"];
        auto ins       = r.result;
        auto args      = add_ins->inputs();
536

Paul's avatar
Paul committed
537
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
538
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2)
Paul's avatar
Paul committed
539
540
            return;
        args.insert(args.begin(), input_ins);
Paul's avatar
Paul committed
541
542
543
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
544
        args.back() = ins->inputs().back();
545
        m.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
546
    }
Paul's avatar
Paul committed
547
548
};

Paul's avatar
Paul committed
549
550
551
552
struct find_mul_add
{
    auto matcher() const
    {
Paul's avatar
Paul committed
553
554
        return match::name("gpu::add")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b")));
Paul's avatar
Paul committed
555
556
    }

557
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
558
    {
Paul's avatar
Paul committed
559
560
561
562
        auto mul_ins = r.instructions["mul"];
        auto b_ins   = r.instructions["b"];
        auto ins     = r.result;
        auto args    = mul_ins->inputs();
Paul's avatar
Paul committed
563
564
565
566
567
568
569
        assert(mul_ins != b_ins);

        move_standard_front(args);
        move_broadcasted_back(args);
        args.insert(std::prev(args.end()), b_ins);

        args.back() = ins->inputs().back();
570
        m.replace_instruction(ins, hip_mul_add{}, args);
Paul's avatar
Paul committed
571
572
573
    }
};

Paul's avatar
Paul committed
574
575
576
577
struct find_mul_add_relu
{
    auto matcher() const
    {
Paul's avatar
Paul committed
578
        return match::name("gpu::relu")(
kahmed10's avatar
kahmed10 committed
579
            match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add")));
Paul's avatar
Paul committed
580
581
    }

582
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
583
584
    {
        auto mul_add_ins = r.instructions["mul_add"];
Paul's avatar
Paul committed
585
586
        auto ins         = r.result;
        auto args        = mul_add_ins->inputs();
Paul's avatar
Paul committed
587
588
589

        // Use the allocation from the relu operator
        args.back() = ins->inputs().back();
590
        m.replace_instruction(ins, hip_mul_add_relu{}, args);
Paul's avatar
Paul committed
591
592
593
    }
};

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
struct miopen_fusion
{
    struct fuse_op_data
    {
        operation op;
        float alpha = 1;
        float beta  = 0;
    };
    struct fuse_op : fuse_op_data, reflect_equality<fuse_op>, reflect_stream<fuse_op>
    {
        template <class Self, class F>
        static auto reflect(Self& self, F f)
        {
            return pack(f(self.op, "op"), f(self.alpha, "alpha"), f(self.beta, "beta"));
        }
    };
    std::vector<fuse_op> ops = {};
    fusion f                 = {};
    std::function<void(context&, const fusion&, const std::vector<argument>&)> execute;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.ops, "ops"));
    }

619
620
621
622
623
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
    value compile(context& ctx, const shape&, std::vector<shape> inputs)
    {
        // Compensate for allocation
        inputs.pop_back();
        std::size_t i = 0;
        f             = fusion(inputs[i]);
        i++;
        std::vector<std::function<void(const fused_operator_args&, const std::vector<argument>&)>>
            invokers;
        for(auto&& fop : ops)
        {
            if(i > inputs.size())
            {
                f = {};
                return {};
            }
            if(fop.op.name() == "convolution")
            {
                auto* mop = f.create_conv(any_cast<op::convolution>(fop.op), inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsConvForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "add")
            {
                auto* mop = f.create_bias(inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsBiasForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "relu")
            {
                auto* mop = f.create_relu();
                invokers.push_back([=](const fused_operator_args& fargs,
                                       const std::vector<argument>&) {
                    miopenSetOpArgsActivForward(fargs.get(), mop, &fop.alpha, &fop.beta, 0, 0, 0);
                });
            }
            else
            {
                f = {};
                return {};
            }
        }
        if(not f.compile(ctx))
        {
            f = {};
            return {};
        }
        execute = [invokers](context& c, const fusion& ff, const std::vector<argument>& args) {
            auto fargs = make_fused_args();
            for(auto&& invoker : invokers)
                invoker(fargs, args);
            ff.execute(c, fargs, args.front(), args.back());
        };
        return {{"workspace", f.get_workspace(ctx).bytes()}};
    }
    void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
    {
        if(not f.empty())
            return;
        auto v = compile(ctx, output_shape, inputs);
        if(not v.is_object())
            MIGRAPHX_THROW("Failed to compile fusion plan");
    }
    std::string name() const { return "gpu::miopen_fusion"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(ops.empty())
            return {};
        // TODO: Check number of arguments
        return ops.front().op.compute_shape({inputs[0], inputs[1]});
    }
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
    {
        execute(ctx, f, args);
        return args.back();
    }
};
709
MIGRAPHX_REGISTER_OP(miopen_fusion)
710

Paul's avatar
Paul committed
711
712
713
struct miopen_conv_bias
{
    op::convolution op;
714
    fusion fp         = {};
715
716
    fusion::op_t conv = {};
    fusion::op_t bias = {};
Paul's avatar
Paul committed
717

Paul's avatar
Paul committed
718
719
720
721
722
723
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Paul committed
724
725
726
727
728
    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
729
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Paul committed
730
    }
Paul's avatar
Paul committed
731
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
732
    {
Paul's avatar
Paul committed
733
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
734
        float alpha = 1;
Paul's avatar
Paul committed
735
        float beta  = 0;
Paul's avatar
Paul committed
736
737
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
738
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
739
740
    }

741
742
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
743
744
745
746
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        if(not fp.compile(ctx))
747
            MIGRAPHX_THROW("Failed to compile fusion plan");
748
749
    }

750
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
751
752
753
754
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Paul committed
755
};
756
MIGRAPHX_REGISTER_OP(miopen_conv_bias)
Paul's avatar
Paul committed
757

Paul's avatar
Add cbr  
Paul committed
758
759
760
struct miopen_conv_bias_relu
{
    op::convolution op;
761
    fusion fp         = {};
762
763
764
    fusion::op_t conv = {};
    fusion::op_t bias = {};
    fusion::op_t relu = {};
Paul's avatar
Add cbr  
Paul committed
765

Paul's avatar
Paul committed
766
767
768
769
770
771
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Add cbr  
Paul committed
772
773
774
775
776
    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
777
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Add cbr  
Paul committed
778
    }
Paul's avatar
Paul committed
779
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
780
781
    {
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
782
        float alpha = 1;
Paul's avatar
Paul committed
783
        float beta  = 0;
Paul's avatar
Add cbr  
Paul committed
784
785
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
786
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
787
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
788
    }
789
790
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
791
792
793
794
795
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        relu = fp.create_relu();
        fp.compile(ctx);
796
797
    }

798
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
799
800
801
802
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Add cbr  
Paul committed
803
};
804
MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu)
Paul's avatar
Add cbr  
Paul committed
805

Paul's avatar
Paul committed
806
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
807
808
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
809
    return match::name("gpu::add")(
Paul's avatar
Paul committed
810
811
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
812
        ms...);
Paul's avatar
Paul committed
813
814
}

Paul's avatar
Paul committed
815
template <class Op>
816
void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
Paul's avatar
Paul committed
817
818
819
820
821
822
823
824
825
826
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

827
    Op cb{conv_op};
Paul's avatar
Paul committed
828
    // TODO: Insert ws allocation
Paul's avatar
Paul committed
829
    auto ws = cb.get_workspace(ctx);
Paul's avatar
Paul committed
830
    (void)ws;
831
    m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
832
833
}

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
inline auto precompile_name(std::string s) // NOLINT
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(ins->name() != "gpu::precompile_op")
            return false;
        auto op = from_value<operation>(ins->get_operator().to_value().at("op"));
        return (op.name() == s);
    });
}

template <class... Ms>
auto conv_bias_pointwise(Ms... ms)
{
    return precompile_name("pointwise")(
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
        ms...);
}

Paul's avatar
Paul committed
853
struct find_conv_bias
Paul's avatar
Paul committed
854
{
Paul's avatar
Paul committed
855
    context* ctx = nullptr;
Paul's avatar
Paul committed
856
857
    auto matcher() const
    {
kahmed10's avatar
kahmed10 committed
858
859
        return conv_bias(match::none_of(
            match::output(match::name(std::unordered_set<std::string>{"gpu::relu"}))));
Paul's avatar
Paul committed
860
861
    }

862
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
863
    {
864
        apply_conv_bias<miopen_conv_bias>(*ctx, m, r);
Paul's avatar
Paul committed
865
866
867
    }
};

Paul's avatar
Paul committed
868
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
869
870
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
871
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
872

873
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Add cbr  
Paul committed
874
    {
875
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, m, r);
Paul's avatar
Add cbr  
Paul committed
876
877
    }
};
878

879
880
881
882
883
884
885
886
887
888
889
struct find_conv_pointwise
{
    context* ctx = nullptr;
    auto matcher() const
    {
        return precompile_name("pointwise")(
            match::nargs(3),
            match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                    fusable_conv(match::used_once()).bind("conv")));
    }

890
    void apply(module& m, const match::matcher_result& r) const
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
    {
        auto conv_ins    = r.instructions["conv"];
        auto bias_ins    = r.instructions["bias"];
        auto ins         = r.result;
        auto input_ins   = conv_ins->inputs().at(0);
        auto weights_ins = conv_ins->inputs().at(1);
        auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto alloc_ins   = ins->inputs().back();

        module_ref pm = ins->module_inputs().front();

        miopen_fusion op{};
        op.ops.push_back({{conv_op}});
        for(auto&& i : *pm)
        {
            if(i.name()[0] == '@')
                continue;
            op.ops.push_back({{i.get_operator()}});
        }
        std::vector<instruction_ref> inputs = {input_ins, weights_ins, bias_ins, alloc_ins};
        auto v                              = op.compile(*ctx, ins->get_shape(), to_shapes(inputs));
        if(not v.is_object())
            return;
        m.replace_instruction(ins, op, inputs);
    }
};

918
919
920
921
922
923
924
925
926
927
struct find_gemm_add
{
    auto matcher() const
    {
        return match::name("gpu::add")(
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

928
    void apply(module& m, const match::matcher_result& r) const
929
930
931
932
933
934
935
936
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
937
        if(not float_equal(gemm.beta, 0))
938
939
940
941
942
943
944
945
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
946
        if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
947
        {
948
            copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
949
950
951
952
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

953
        gemm.beta = 1;
954
        m.replace_instruction(ins, gemm, inputs);
955
956
957
    }
};

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
auto pointwise_name(const std::string& s)
{
    return precompile_name("pointwise")(match::make_basic_pred_matcher([=](auto ins) {
        module_ref pm = ins->module_inputs().front();
        auto n = std::count_if(pm->begin(), pm->end(), [&](auto& i) { return i.name() == s; });
        if(n != 1)
            return false;
        return std::all_of(pm->begin(), pm->end(), [&](auto& i) {
            return starts_with(i.name(), "@") or i.name() == s;
        });
    }));
}

struct find_gemm_pointwise
{
    auto matcher() const
    {
Paul's avatar
Paul committed
975
        return precompile_name("pointwise")(
976
977
            match::nargs(3),
            match::all_of[match::inputs()](match::standard_shape()),
Paul's avatar
Format  
Paul committed
978
979
980
            match::either_arg(0, 1)(
                match::any().bind("c"),
                match::name("gpu::gemm")(match::nargs(3), match::used_once()).bind("gemm")));
981
982
    }

Paul's avatar
Paul committed
983
984
985
986
    // TODO: Move to matcher.hpp
    static auto match_param(const std::string& name)
    {
        return match::make_basic_pred_matcher([=](auto ins) {
Paul's avatar
Format  
Paul committed
987
            if(ins->name() != "@param")
Paul's avatar
Paul committed
988
989
990
991
992
993
                return false;
            auto p = any_cast<builtin::param>(ins->get_operator());
            return p.parameter == name;
        });
    }

Paul's avatar
Format  
Paul committed
994
    template <class M>
Paul's avatar
Paul committed
995
996
    static auto match_mul_const(M m, const std::string& var)
    {
Paul's avatar
Format  
Paul committed
997
998
        return match::name("mul")(match::either_arg(0, 1)(match::name("@literal").bind(var), m))
            .bind(var + "_mul");
Paul's avatar
Paul committed
999
1000
1001
1002
    }

    static auto match_add(const std::string& input, const std::string& output)
    {
Paul's avatar
Format  
Paul committed
1003
1004
1005
1006
1007
1008
        auto param     = match::name("@param");
        auto add       = match::name("add")(match::args(param, param));
        auto inner_mul = match::any_of(match_mul_const(match_param(input), "alpha"),
                                       match_mul_const(match_param(output), "beta"));
        auto mul_add   = match::name("add")(match::either_arg(0, 1)(inner_mul, param));
        auto add_mul   = match_mul_const(add, "gamma");
Paul's avatar
Paul committed
1009
1010
1011
        return match::name("@return")(match::args(match::any_of(add, mul_add, add_mul)));
    }

Paul's avatar
Format  
Paul committed
1012
    static float get_float(instruction_ref ins) { return ins->get_literal().at<float>(); }
Paul's avatar
Paul committed
1013

Paul's avatar
Format  
Paul committed
1014
    template <class Gemm>
Paul's avatar
Paul committed
1015
1016
1017
1018
1019
1020
1021
    static bool update_gemm(Gemm& gemm, module_ref pm, unsigned input)
    {
        auto names = pm->get_parameter_names();
        if(names.size() != 2)
            return false;
        std::sort(names.begin(), names.end());
        unsigned output = input == 0 ? 1 : 0;
Paul's avatar
Format  
Paul committed
1022
1023
1024
        auto mr         = match::match_instruction(
            *pm, std::prev(pm->end()), match_add(names[input], names[output]));
        if(mr.result == pm->end())
Paul's avatar
Paul committed
1025
            return false;
Paul's avatar
Format  
Paul committed
1026
        if(contains(mr.instructions, "alpha_mul"))
Paul's avatar
Paul committed
1027
            gemm.alpha *= get_float(mr.instructions["alpha"]);
Paul's avatar
Format  
Paul committed
1028
        else if(contains(mr.instructions, "beta_mul"))
Paul's avatar
Paul committed
1029
            gemm.beta *= get_float(mr.instructions["beta"]);
Paul's avatar
Format  
Paul committed
1030
        else if(contains(mr.instructions, "gamma_mul"))
Paul's avatar
Paul committed
1031
1032
1033
1034
1035
1036
1037
        {
            gemm.alpha *= get_float(mr.instructions["gamma"]);
            gemm.beta *= get_float(mr.instructions["gamma"]);
        }
        return true;
    }

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
        if(not float_equal(gemm.beta, 0))
            return;
Paul's avatar
Paul committed
1049
1050
        gemm.beta = 1;

Paul's avatar
Format  
Paul committed
1051
1052
        if(not update_gemm(
               gemm, ins->module_inputs().front(), ins->inputs().front() == gemm_ins ? 0 : 1))
Paul's avatar
Paul committed
1053
            return;
1054
1055
1056
1057
1058

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        inputs.push_back(c_ins);
1059
        inputs.push_back(ins->inputs().back());
1060
1061
1062
1063
1064

        m.replace_instruction(ins, gemm, inputs);
    }
};

1065
1066
1067
1068
1069
1070
1071
struct find_commutative_broadcast
{
    auto matcher() const
    {
        return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape()));
    }

1072
    void apply(module& m, const match::matcher_result& r) const
1073
1074
1075
1076
1077
    {
        auto ins  = r.result;
        auto args = ins->inputs();
        move_broadcasted_back(args);

1078
        m.replace_instruction(ins, ins->get_operator(), args);
1079
1080
1081
    }
};

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
struct find_contiguous
{
    auto matcher() const { return match::name("gpu::contiguous"); }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;

        m.replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(make_op("contiguous"))}}),
            ins->inputs());
    }
};

struct find_contiguous_pointwise
{
    auto matcher() const
    {
        return match::name("gpu::contiguous")(match::arg(0)(precompile_name("pointwise")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins    = r.result;
        auto pw     = ins->inputs().front();
        auto alloc  = ins->inputs().back();
        auto args   = pw->inputs();
        args.back() = alloc;

        m.replace_instruction(ins, pw->get_operator(), args, pw->module_inputs());
    }
};

1116
void fuse_ops::apply(module& m) const
Paul's avatar
Paul committed
1117
{
1118
    match::find_matches(m, find_contiguous_pointwise{}, find_gelu{}, find_gelu_new{fast_math});
1119
1120
1121
    run_passes(m, {dead_code_elimination{}});
    match::find_matches(m, find_triadd{});
    match::find_matches(m,
kahmed10's avatar
kahmed10 committed
1122
                        find_layernorm{},
1123
                        find_conv_pointwise{ctx},
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
                        find_conv_bias_relu{ctx},
                        find_conv_bias{ctx},
                        find_add_gelu{},
                        find_add_gelu_new{},
                        find_mul_add{},
                        find_mul_add_relu{},
                        find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}},
                        find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}},
                        find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}},
                        find_add_clip{});
1134
    run_passes(m, {dead_code_elimination{}});
1135
1136
1137
1138
1139
    match::find_matches(m,
                        find_triadd_layernorm{},
                        find_gemm_add{},
                        find_gemm_pointwise{},
                        find_commutative_broadcast{});
1140
    match::find_matches(m, find_contiguous{});
Paul's avatar
Paul committed
1141
}
Paul's avatar
Paul committed
1142
1143

} // namespace gpu
Paul's avatar
Paul committed
1144
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1145
} // namespace migraphx