fuse_ops.cpp 6.11 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraph/gpu/fuse_ops.hpp>
Paul's avatar
Paul committed
2
#include <migraph/matcher.hpp>
Paul's avatar
Paul committed
3
4
#include <migraph/gpu/miopen.hpp>
#include <migraph/gpu/convolution.hpp>
Paul's avatar
Paul committed
5
6
7
8
9
10
11
#include <migraph/gpu/device/add_relu.hpp>
#include <migraph/instruction.hpp>

namespace migraph {

namespace gpu {

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

    template<class T>
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

    fusion(const shape& input)
    // : fp(make_fusion_plan(input))
    {
        auto t = make_tensor(input);
        fp = make_fusion_plan(t);
        keep_alive(std::move(t));
    }


    op_t operator[](std::size_t i) const
    {
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Failed retrieving operator at " + std::to_string(i));
        return result;
    }

    auto get() const
    {
        return fp.get();
    }

    op_t create_bias(const shape& bias)
    {
        op_t result;
        auto b = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t = keep_alive(make_tensor(b));
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Creating operator failed");
        return result;
    }

    op_t create_relu()
    {
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Creating operator failed");
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
        op_t result;
        auto cd = keep_alive(make_conv(op));
        auto t = keep_alive(make_tensor(weights));
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Creating operator failed");
        return result;
    }

};

Paul's avatar
Paul committed
84
85
86
87
88
struct hip_add_relu
{
    std::string name() const { return "hip::add_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Paul's avatar
Paul committed
89
        check_shapes{inputs, *this}.has(3);
Paul's avatar
Paul committed
90
91
        return inputs.front();
    }
Paul's avatar
Paul committed
92
    argument compute(context&, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
93
    {
94
        device::add_relu(args.at(2), args.at(0), args.at(1));
Paul's avatar
Paul committed
95
96
97
98
        return args.at(2);
    }
};

Paul's avatar
Paul committed
99
struct match_add_relu
Paul's avatar
Paul committed
100
{
Paul's avatar
Paul committed
101
102
    auto matcher() const
    {
Paul's avatar
Paul committed
103
        return match::name("gpu::relu")(match::arg(0)(match::name("gpu::add").bind("add")));
Paul's avatar
Paul committed
104
    }
Paul's avatar
Paul committed
105

Paul's avatar
Paul committed
106
107
    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
108
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
109
110
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
111
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
112
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
113
        p.replace_instruction(ins, hip_add_relu{}, args);
Paul's avatar
Paul committed
114
    }
Paul's avatar
Paul committed
115
116
};

Paul's avatar
Paul committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
struct miopen_conv_bias
{
    op::convolution op;
    fusion f;
    fusion::op_t conv;
    fusion::op_t bias;

    miopen_conv_bias(op::convolution c, shape input, shape weights, shape b)
    : op(c), f(input)
    {
        f.create_conv(op, weights);
        f.create_bias(b);
    }

    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
        return op.compute_shape({inputs.at(0), inputs.at(1)});
    }
    argument compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const
    {
        auto fargs = make_fused_args();
        float alpha = 1, beta = 0;
        auto x = make_tensor(args[0].get_shape());
        auto y = make_tensor(output_shape);
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
        miopenExecuteFusionPlan(ctx.handle.get(), f.get(), x.get(), args[0].implicit(), y.get(), args[4].implicit(), fargs.get());
        return args.at(4);
    }

    shape compile(context& ctx)
    {
        int algo_count = 1;
        miopenConvFwdAlgorithm_t algo;
        miopenFusionPlanConvolutionGetAlgo(f.get(), 1, &algo_count, &algo);
        std::size_t ws_size = 0;
        miopenFusionPlanGetWorkSpaceSize(ctx.handle.get(), f.get(), &ws_size, algo);
        auto status = miopenCompileFusionPlan(ctx.handle.get(), f.get());
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Compiling fusion plan failed");
        return shape{shape::int8_type, {ws_size}};
    }
};

struct match_conv_bias
{
    context * ctx = nullptr;
    auto matcher() const
    {
        return match::name("gpu::add")(match::any_of(
            match::all_of(match::arg(0)(match::broadcast_shape().bind("bias")), match::arg(1)(match::name("gpu::convolution").bind("conv"))),
            match::all_of(match::arg(1)(match::broadcast_shape().bind("bias")), match::arg(0)(match::name("gpu::convolution").bind("conv")))
        ));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto conv_ins = r.instructions["conv"];
        auto bias_ins = r.instructions["bias"];
        auto input_ins = conv_ins->inputs().at(0);
        auto weights_ins = conv_ins->inputs().at(1);
        auto conv_op = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto ins     = r.result;
        auto alloc_ins = ins->inputs().back();
        auto old_ws_ins    = conv_ins->inputs().at(2);

        miopen_conv_bias cb{conv_op, input_ins->get_shape(), weights_ins->get_shape(), bias_ins->get_shape()};
        // TODO: Insert ws allocation
        auto ws   = cb.compile(*ctx);

        p.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
    }
};

void fuse_ops::apply(program& p) const { 
    match::find_matches(p, match_add_relu{}, match_conv_bias{ctx}); 
}
Paul's avatar
Paul committed
197
198
199
200

} // namespace gpu

} // namespace migraph