rewrite_rnn.cpp 46.3 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
2
3
4
5
6
7
8
9
10
#include <migraphx/rewrite_rnn.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

Shucai Xiao's avatar
Shucai Xiao committed
11
void rewrite_rnn::apply(program& prog) const
Shucai Xiao's avatar
Shucai Xiao committed
12
13
14
{
    for(auto ins : iterator_for(prog))
    {
Shucai Xiao's avatar
Shucai Xiao committed
15
        if(ins->name() == "rnn")
Shucai Xiao's avatar
Shucai Xiao committed
16
        {
Shucai Xiao's avatar
Shucai Xiao committed
17
            apply_vanilla_rnn(prog, ins);
18
        }
19
        else if(ins->name() == "gru")
20
21
        {
            apply_gru(prog, ins);
Shucai Xiao's avatar
Shucai Xiao committed
22
        }
23
24
25
26
        else if(ins->name() == "lstm")
        {
            apply_lstm(prog, ins);
        }
Shucai Xiao's avatar
Shucai Xiao committed
27
    }
28
29
}

Shucai Xiao's avatar
Shucai Xiao committed
30
void rewrite_rnn::apply_vanilla_rnn(program& prog, instruction_ref ins) const
31
32
33
34
{
    assert(ins->name() == "rnn");
    // could be 3 to 6 inputs, but the parse_rnn function will
    // append undefined operators to make 6 arguments when parsing
Shucai Xiao's avatar
Shucai Xiao committed
35
    // an onnx file. Another case is user can have num of arguments
36
37
38
39
40
41
42
43
44
45
    // when writing their program.
    auto args = ins->inputs();

    shape seq_shape         = args[0]->get_shape();
    std::size_t hidden_size = args[1]->get_shape().lens()[1];
    std::size_t batch_size  = seq_shape.lens()[1];
    shape::type_t type      = seq_shape.type();
    migraphx::shape ih_shape{type, {1, batch_size, hidden_size}};
    std::vector<float> data(ih_shape.elements(), 0);

Shucai Xiao's avatar
Shucai Xiao committed
46
47
    auto actv_funcs         = vanilla_rnn_actv_funcs(ins);
    auto rnn_op             = any_cast<op::rnn>(ins->get_operator());
48
    op::rnn_direction dicrt = rnn_op.direction;
49
    instruction_ref last_output{};
50
    if(dicrt == op::rnn_direction::bidirectional)
51
52
53
54
55
56
57
58
59
60
61
62
    {
        // input weight matrix
        auto w_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[1]);
        auto w_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[1]);

        // hidden state weight matrix
        auto r_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[2]);
        auto r_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[2]);

        // process bias
        instruction_ref bias_forward = prog.end();
        instruction_ref bias_reverse = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
63
        if(args.size() >= 4 && args[3]->name() != "undefined")
64
65
66
67
68
69
70
71
72
        {
            bias_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[3]);
            bias_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[3]);
        }

        // process intial hidden state, it could be the 6th argument
        // or the 5th one (if the sequence len argument is ignored)
        instruction_ref ih_forward{};
        instruction_ref ih_reverse{};
Shucai Xiao's avatar
Shucai Xiao committed
73
        if(args.size() == 6 && args[5]->name() != "undefined")
74
75
76
77
78
79
80
81
82
83
        {
            ih_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[5]);
            ih_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[5]);
        }
        else
        {
            ih_forward = prog.add_literal(migraphx::literal{ih_shape, data});
            ih_reverse = prog.add_literal(migraphx::literal{ih_shape, data});
        }

Shucai Xiao's avatar
Shucai Xiao committed
84
        auto ret_forward = vanilla_rnn_cell(true,
Shucai Xiao's avatar
Shucai Xiao committed
85
86
87
88
89
90
91
92
                                            prog,
                                            ins,
                                            args[0],
                                            w_forward,
                                            r_forward,
                                            bias_forward,
                                            ih_forward,
                                            actv_funcs.at(0));
Shucai Xiao's avatar
Shucai Xiao committed
93
        auto ret_reverse = vanilla_rnn_cell(false,
Shucai Xiao's avatar
Shucai Xiao committed
94
95
96
97
98
99
100
101
                                            prog,
                                            ins,
                                            args[0],
                                            w_reverse,
                                            r_reverse,
                                            bias_reverse,
                                            ih_reverse,
                                            actv_funcs.at(1));
102
103
104
105
106
107
108
109
110
111

        auto concat_output =
            prog.insert_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_output);

        // The following logic is to ensure the last instruction rewritten from
        // rnn operator is a concat instruction
        // sequence len is 1
        if(ret_forward[0] == prog.end())
        {
112
            prog.replace_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
113
114
115
116
117
118
119
        }
        else
        {
            ret_forward[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_forward[0], ret_forward[1]);
            ret_reverse[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_reverse[1], ret_reverse[0]);
120
            prog.replace_instruction(ins, op::concat{1}, {ret_forward[0], ret_reverse[0]});
121
122
123
124
        }
    }
    else
    {
125
        bool is_forward = (dicrt == op::rnn_direction::forward);
126
127
128
129
130
131
132
133
        // input weight matrix
        auto w = args[1];

        // hidden state weight matrix
        auto r = args[2];

        // process bias and initial hidden state
        instruction_ref bias = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
134
        if(args.size() >= 4 && args[3]->name() != "undefined")
135
136
137
138
139
140
        {
            bias = args[3];
        }

        // process intial hidden state
        instruction_ref ih;
Shucai Xiao's avatar
Shucai Xiao committed
141
        if(args.size() == 6 && args[5]->name() != "undefined")
142
143
144
145
146
147
148
149
        {
            ih = args[5];
        }
        else
        {
            ih = prog.add_literal(migraphx::literal{ih_shape, data});
        }

Shucai Xiao's avatar
Shucai Xiao committed
150
151
        auto ret =
            vanilla_rnn_cell(is_forward, prog, ins, args[0], w, r, bias, ih, actv_funcs.at(0));
152
153
154
155
156
157
158
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, ret[1]);

        // following logic is to ensure the last instruction is a
        // concat instruction
        // sequence len is 1
        if(ret[0] == prog.end())
        {
159
            prog.replace_instruction(ins, op::concat{0}, ret[1]);
160
161
162
163
164
        }
        else
        {
            auto concat_arg0 = is_forward ? ret[0] : ret[1];
            auto concat_arg1 = is_forward ? ret[1] : ret[0];
165
            prog.replace_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        }
    }

    // search its output to find if there are rnn_last_output operator
    // while loop to handle case of multiple rnn_last_output operators
    auto last_output_it = ins->outputs().begin();
    while(last_output_it != ins->outputs().end())
    {
        last_output_it = std::find_if(last_output_it, ins->outputs().end(), [](auto i) {
            return i->name() == "rnn_last_output";
        });

        if(last_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_output_it, last_output);
            last_output_it++;
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
184
185
}

Shucai Xiao's avatar
Shucai Xiao committed
186
std::vector<instruction_ref> rewrite_rnn::vanilla_rnn_cell(bool is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
187
188
189
190
191
192
193
194
                                                           program& prog,
                                                           instruction_ref ins,
                                                           instruction_ref input,
                                                           instruction_ref w,
                                                           instruction_ref r,
                                                           instruction_ref bias,
                                                           instruction_ref ih,
                                                           operation& actv_func) const
Shucai Xiao's avatar
Shucai Xiao committed
195
{
Shucai Xiao's avatar
Shucai Xiao committed
196
197
    // squeeze and transpose w
    std::vector<int64_t> perm{1, 0};
Shucai Xiao's avatar
Shucai Xiao committed
198
    auto sw      = prog.insert_instruction(ins, op::squeeze{{0}}, w);
Shucai Xiao's avatar
Shucai Xiao committed
199
    auto tran_sw = prog.insert_instruction(ins, op::transpose{perm}, sw);
Shucai Xiao's avatar
Shucai Xiao committed
200
201

    // squeeze and transpose r
Shucai Xiao's avatar
Shucai Xiao committed
202
    auto sr      = prog.insert_instruction(ins, op::squeeze{{0}}, r);
Shucai Xiao's avatar
Shucai Xiao committed
203
204
205
206
207
208
    auto tran_sr = prog.insert_instruction(ins, op::transpose{perm}, sr);

    // initial hidden state
    auto sih = prog.insert_instruction(ins, op::squeeze{{0}}, ih);

    // bias
Shucai Xiao's avatar
Shucai Xiao committed
209
    if(bias != prog.end())
Shucai Xiao's avatar
Shucai Xiao committed
210
    {
Shucai Xiao's avatar
Shucai Xiao committed
211
212
213
214
215
216
        long hs    = r->get_shape().lens()[2];
        auto sbias = prog.insert_instruction(ins, op::squeeze{{0}}, bias);
        auto wb    = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sbias);
        auto rb    = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sbias);
        auto b     = prog.insert_instruction(ins, op::add{}, wb, rb);
        bias       = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, b);
Shucai Xiao's avatar
Shucai Xiao committed
217
218
    }

Shucai Xiao's avatar
Shucai Xiao committed
219
220
    instruction_ref hidden_out = prog.end();
    instruction_ref last_out{};
Shucai Xiao's avatar
Shucai Xiao committed
221
222
    last_out            = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, sih);
    std::size_t seq_len = input->get_shape().lens()[0];
Shucai Xiao's avatar
Shucai Xiao committed
223
224
    for(std::size_t i = 0; i < seq_len; i++)
    {
Shucai Xiao's avatar
Shucai Xiao committed
225
        long seq_index = is_forward ? i : (seq_len - 1 - i);
Shucai Xiao's avatar
Shucai Xiao committed
226
227
        auto xt = prog.insert_instruction(ins, op::slice{{0}, {seq_index}, {seq_index + 1}}, input);
        xt      = prog.insert_instruction(ins, op::squeeze{{0}}, xt);
Shucai Xiao's avatar
Shucai Xiao committed
228
229
230
231
        auto xt_wi = prog.insert_instruction(ins, op::dot{}, xt, tran_sw);
        auto ht_ri = prog.insert_instruction(ins, op::dot{}, sih, tran_sr);
        auto xt_ht = prog.insert_instruction(ins, op::add{}, xt_wi, ht_ri);
        instruction_ref ht;
Shucai Xiao's avatar
Shucai Xiao committed
232
233
        if(bias != prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
234
            ht = prog.insert_instruction(ins, op::add{}, xt_ht, bias);
Shucai Xiao's avatar
Shucai Xiao committed
235
236
237
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
238
            ht = xt_ht;
Shucai Xiao's avatar
Shucai Xiao committed
239
240
241
        }

        // apply activation function
Shucai Xiao's avatar
Shucai Xiao committed
242
        ht  = prog.insert_instruction(ins, actv_func, ht);
Shucai Xiao's avatar
Shucai Xiao committed
243
        sih = ht;
Shucai Xiao's avatar
Shucai Xiao committed
244

Shucai Xiao's avatar
Shucai Xiao committed
245
246
247
        // add the dimensions of sequence length (axis 0 for sequence length,
        // axis 1 for num_directions
        last_out = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, ht);
Shucai Xiao's avatar
Shucai Xiao committed
248

Shucai Xiao's avatar
Shucai Xiao committed
249
250
251
        // concatenation for the last last_out is performed in the apply()
        // function to ensure the last instruction is concat, then we have
        // output inserted
Shucai Xiao's avatar
Shucai Xiao committed
252
        if(i < seq_len - 1)
Shucai Xiao's avatar
Shucai Xiao committed
253
        {
Shucai Xiao's avatar
Shucai Xiao committed
254
255
            if(is_forward)
            {
Shucai Xiao's avatar
Shucai Xiao committed
256
257
258
259
                hidden_out =
                    (seq_index == 0)
                        ? last_out
                        : prog.insert_instruction(ins, op::concat{0}, hidden_out, last_out);
Shucai Xiao's avatar
Shucai Xiao committed
260
261
262
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
263
264
265
266
                hidden_out =
                    (seq_index == seq_len - 1)
                        ? last_out
                        : prog.insert_instruction(ins, op::concat{0}, last_out, hidden_out);
Shucai Xiao's avatar
Shucai Xiao committed
267
            }
Shucai Xiao's avatar
Shucai Xiao committed
268
269
270
        }
    }

271
    return {hidden_out, last_out};
Shucai Xiao's avatar
Shucai Xiao committed
272
273
}

Shucai Xiao's avatar
Shucai Xiao committed
274
std::vector<operation> rewrite_rnn::vanilla_rnn_actv_funcs(instruction_ref ins) const
275
276
{
    auto rnn_op = any_cast<op::rnn>(ins->get_operator());
Shucai Xiao's avatar
Shucai Xiao committed
277
278
279
280
    // could be 3 to 6 inputs, but the parse_gru function will
    // append undefined operators to make 6 arguments when parsing
    // an onnx file. Another case is user can have any num of arguments
    // when writing their program.
281
    if(rnn_op.direction == op::rnn_direction::bidirectional)
282
    {
Shucai Xiao's avatar
Shucai Xiao committed
283
        if(rnn_op.actv_funcs.empty())
284
285
286
287
        {
            // default is tanh
            return {op::tanh{}, op::tanh{}};
        }
Shucai Xiao's avatar
Shucai Xiao committed
288
        else if(rnn_op.actv_funcs.size() == 1)
289
290
291
292
293
294
295
296
297
298
        {
            return {rnn_op.actv_funcs.at(0), rnn_op.actv_funcs.at(0)};
        }
        else
        {
            return rnn_op.actv_funcs;
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
299
        if(rnn_op.actv_funcs.empty())
300
301
302
303
304
305
306
307
308
309
310
        {
            // default is tanh
            return {op::tanh{}};
        }
        else
        {
            return rnn_op.actv_funcs;
        }
    }
}

311
312
313
314
void rewrite_rnn::apply_gru(program& prog, instruction_ref ins) const
{
    assert(ins->name() == "gru");
    const auto actv_funcs = gru_actv_funcs(ins);
Shucai Xiao's avatar
Shucai Xiao committed
315
316
317
318
    // could be 3 to 6 inputs, but the parse_gru function will
    // append undefined operators to make 6 arguments when parsing
    // an onnx file. Another case is user can have num of arguments
    // when writing their program.
319
320
321
322
323
324
325
326
327
    auto args = ins->inputs();

    shape seq_shape         = args[0]->get_shape();
    std::size_t hidden_size = args[2]->get_shape().lens()[2];
    std::size_t batch_size  = seq_shape.lens()[1];
    shape::type_t type      = seq_shape.type();
    migraphx::shape ih_shape{type, {1, batch_size, hidden_size}};
    std::vector<float> data(ih_shape.elements(), 0.0);

Shucai Xiao's avatar
Shucai Xiao committed
328
    auto gru_op             = any_cast<op::gru>(ins->get_operator());
329
    op::rnn_direction dicrt = gru_op.direction;
330
    instruction_ref last_output{};
331
    if(dicrt == op::rnn_direction::bidirectional)
332
333
334
335
336
337
338
339
340
341
342
343
    {
        // w weight matrix
        auto w_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[1]);
        auto w_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[1]);

        // r weight matrix
        auto r_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[2]);
        auto r_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[2]);

        // bias
        instruction_ref bias_forward = prog.end();
        instruction_ref bias_reverse = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
344
        if(args.size() >= 4 && args[3]->name() != "undefined")
345
346
347
348
349
350
351
352
        {
            bias_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[3]);
            bias_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[3]);
        }

        // intial hidden state
        instruction_ref ih_forward{};
        instruction_ref ih_reverse{};
Shucai Xiao's avatar
Shucai Xiao committed
353
        if(args.size() == 6 && args[5]->name() != "undefined")
354
355
356
357
358
359
360
361
362
363
        {
            ih_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[5]);
            ih_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[5]);
        }
        else
        {
            ih_forward = prog.add_literal(migraphx::literal{ih_shape, data});
            ih_reverse = prog.add_literal(migraphx::literal{ih_shape, data});
        }

Shucai Xiao's avatar
Shucai Xiao committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        auto ret_forward = gru_cell(true,
                                    prog,
                                    ins,
                                    {args[0], w_forward, r_forward, bias_forward, ih_forward},
                                    gru_op.linear_before_reset,
                                    actv_funcs.at(0),
                                    actv_funcs.at(1));

        auto ret_reverse = gru_cell(false,
                                    prog,
                                    ins,
                                    {args[0], w_reverse, r_reverse, bias_reverse, ih_reverse},
                                    gru_op.linear_before_reset,
                                    actv_funcs.at(2),
                                    actv_funcs.at(3));
379
380
381
382
383
384
385
386
387

        auto concat_output =
            prog.insert_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_output);

        // The following logic is to ensure the last instruction rewritten
        // from gru operator is a concat
        if(ret_forward[0] == prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
388
            prog.replace_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
389
390
391
392
393
394
395
        }
        else
        {
            ret_forward[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_forward[0], ret_forward[1]);
            ret_reverse[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_reverse[1], ret_reverse[0]);
Shucai Xiao's avatar
Shucai Xiao committed
396
            prog.replace_instruction(ins, op::concat{1}, {ret_forward[0], ret_reverse[0]});
397
398
399
400
        }
    }
    else
    {
401
        bool is_forward = (dicrt == op::rnn_direction::forward);
402
403
404
405
406
407
        // weight matrix
        auto w = args[1];
        auto r = args[2];

        // bias
        instruction_ref bias = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
408
        if(args.size() >= 4 && args[3]->name() != "undefined")
409
410
411
412
413
414
        {
            bias = args[3];
        }

        // intial hidden state
        instruction_ref ih{};
Shucai Xiao's avatar
Shucai Xiao committed
415
        if(args.size() == 6 && args[5]->name() != "undefined")
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        {
            ih = args[5];
        }
        else
        {
            ih = prog.add_literal(migraphx::literal{ih_shape, data});
        }

        auto ret = gru_cell(is_forward,
                            prog,
                            ins,
                            {args[0], w, r, bias, ih},
                            gru_op.linear_before_reset,
                            actv_funcs.at(0),
                            actv_funcs.at(1));

        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, ret[1]);

        if(ret[0] == prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
436
            prog.replace_instruction(ins, op::concat{0}, ret[1]);
437
438
439
440
441
        }
        else
        {
            auto concat_arg0 = is_forward ? ret[0] : ret[1];
            auto concat_arg1 = is_forward ? ret[1] : ret[0];
Shucai Xiao's avatar
Shucai Xiao committed
442
            prog.replace_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
443
444
445
        }
    }

446
447
448
    // replace the corresponding rnn_last_output instruction
    // with the last_output, if rnn_last_output exists
    // while loop to handle case of multiple rnn_last_output operators
449
450
451
452
    auto last_output_it = ins->outputs().begin();
    while(last_output_it != ins->outputs().end())
    {
        last_output_it = std::find_if(last_output_it, ins->outputs().end(), [](auto i) {
453
            return i->name() == "rnn_last_output";
454
455
456
457
458
459
460
461
462
463
464
        });

        if(last_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_output_it, last_output);
            last_output_it++;
        }
    }
}

std::vector<instruction_ref> rewrite_rnn::gru_cell(bool is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
465
466
467
468
469
470
                                                   program& prog,
                                                   instruction_ref ins,
                                                   std::vector<instruction_ref> inputs,
                                                   int linear_before_reset,
                                                   const operation& actv_func1,
                                                   const operation& actv_func2) const
471
472
473
474
475
476
477
478
{
    assert(inputs.size() == 5);
    auto seq  = inputs.at(0);
    auto w    = inputs.at(1);
    auto r    = inputs.at(2);
    auto bias = inputs.at(3);
    auto ih   = inputs.at(4);

Shucai Xiao's avatar
Shucai Xiao committed
479
480
    instruction_ref hidden_states = prog.end();
    instruction_ref last_output{};
Shucai Xiao's avatar
Shucai Xiao committed
481
    migraphx::shape seq_shape = seq->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
482
483
484
    migraphx::shape r_shape   = r->get_shape();
    long seq_len              = static_cast<long>(seq_shape.lens()[0]);
    long hs                   = static_cast<long>(r_shape.lens()[2]);
485

Shucai Xiao's avatar
Shucai Xiao committed
486
    migraphx::shape s(seq_shape.type(), {seq_shape.lens()[1], r_shape.lens()[2]});
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    std::vector<int> data(s.elements(), 1);
    auto l1 = prog.add_literal(migraphx::literal{s, data});

    // weight matrix
    std::vector<int64_t> perm{1, 0};
    auto sw      = prog.insert_instruction(ins, op::squeeze{{0}}, w);
    auto wz      = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sw);
    auto tran_wz = prog.insert_instruction(ins, op::transpose{perm}, wz);

    auto wr      = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sw);
    auto tran_wr = prog.insert_instruction(ins, op::transpose{perm}, wr);

    auto wh      = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sw);
    auto tran_wh = prog.insert_instruction(ins, op::transpose{perm}, wh);

    auto sr      = prog.insert_instruction(ins, op::squeeze{{0}}, r);
    auto rz      = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sr);
    auto tran_rz = prog.insert_instruction(ins, op::transpose{perm}, rz);

    auto rr      = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sr);
    auto tran_rr = prog.insert_instruction(ins, op::transpose{perm}, rr);

    auto rh      = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sr);
    auto tran_rh = prog.insert_instruction(ins, op::transpose{perm}, rh);

    // initial states
    auto sih = prog.insert_instruction(ins, op::squeeze{{0}}, ih);

    // bias
    instruction_ref brcst_bz{};
    instruction_ref brcst_br{};
    instruction_ref brcst_wbh{};
    instruction_ref brcst_rbh{};
    instruction_ref brcst_bh{};
    if(bias != prog.end())
    {
        auto sbias = prog.insert_instruction(ins, op::squeeze{{0}}, bias);
        auto wbz   = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sbias);
        auto wbr   = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sbias);
        auto wbh   = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sbias);
        brcst_wbh  = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, wbh);

        auto rbz  = prog.insert_instruction(ins, op::slice{{0}, {3 * hs}, {4 * hs}}, sbias);
        auto rbr  = prog.insert_instruction(ins, op::slice{{0}, {4 * hs}, {5 * hs}}, sbias);
        auto rbh  = prog.insert_instruction(ins, op::slice{{0}, {5 * hs}, {6 * hs}}, sbias);
        brcst_rbh = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, rbh);

        auto bz  = prog.insert_instruction(ins, op::add{}, wbz, rbz);
        brcst_bz = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, bz);

        auto br  = prog.insert_instruction(ins, op::add{}, wbr, rbr);
        brcst_br = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, br);

        auto bh  = prog.insert_instruction(ins, op::add{}, wbh, rbh);
        brcst_bh = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, bh);
    }

    for(long i = 0; i < seq_len; i++)
    {
        long seq_index = is_forward ? i : (seq_len - 1 - i);
        auto xt = prog.insert_instruction(ins, op::slice{{0}, {seq_index}, {seq_index + 1}}, seq);
        xt      = prog.insert_instruction(ins, op::squeeze{{0}}, xt);

        // equation f(xt*(Wz^T) + Ht-1 * (Rz^T) + Wbz + Rbz)
        auto xt_wz = prog.insert_instruction(ins, op::dot{}, xt, tran_wz);
        auto ht_rz = prog.insert_instruction(ins, op::dot{}, sih, tran_rz);
        auto xht_z = prog.insert_instruction(ins, op::add{}, xt_wz, ht_rz);
        if(bias != prog.end())
        {
            xht_z = prog.insert_instruction(ins, op::add{}, xht_z, brcst_bz);
        }
        auto zt = prog.insert_instruction(ins, actv_func1, xht_z);

        // equation f(Xt*(Wr^T) + Ht-1*(Rr^T) + Wbr + Rbr)
        auto xt_wr = prog.insert_instruction(ins, op::dot{}, xt, tran_wr);
        auto ht_rr = prog.insert_instruction(ins, op::dot{}, sih, tran_rr);
        auto xht_r = prog.insert_instruction(ins, op::add{}, xt_wr, ht_rr);
        if(bias != prog.end())
        {
            xht_r = prog.insert_instruction(ins, op::add{}, xht_r, brcst_br);
        }
        auto rt = prog.insert_instruction(ins, actv_func1, xht_r);

        instruction_ref xht_h;
        if(linear_before_reset == 0)
        {
            // equation g(Xt*(Wh^T) + (rt (.) Ht-1)*(Rh^T) + Rbh + Wbh)
            auto xt_wh  = prog.insert_instruction(ins, op::dot{}, xt, tran_wh);
            auto rt_ht1 = prog.insert_instruction(ins, op::mul{}, rt, sih);
            auto rt_rh  = prog.insert_instruction(ins, op::dot{}, rt_ht1, tran_rh);
            xht_h       = prog.insert_instruction(ins, op::add{}, xt_wh, rt_rh);
            if(bias != prog.end())
            {
                xht_h = prog.insert_instruction(ins, op::add{}, xht_h, brcst_bh);
            }
        }
        else
        {
            // equation ht = g(Xt*(Wh^T) + (rt (.) (Ht-1*(Rh^T) + Rbh)) + Wbh)
            auto xt_wh  = prog.insert_instruction(ins, op::dot{}, xt, tran_wh);
            auto ht1_rh = prog.insert_instruction(ins, op::dot{}, sih, tran_rh);
            if(bias != prog.end())
            {
                ht1_rh = prog.insert_instruction(ins, op::add{}, ht1_rh, brcst_rbh);
            }
            auto rt_rh = prog.insert_instruction(ins, op::mul{}, rt, ht1_rh);
            xht_h      = prog.insert_instruction(ins, op::add{}, xt_wh, rt_rh);
            if(bias != prog.end())
            {
                xht_h = prog.insert_instruction(ins, op::add{}, xht_h, brcst_wbh);
            }
        }
        auto ht = prog.insert_instruction(ins, actv_func2, xht_h);

        // equation Ht = (1 - zt) (.) ht + zt (.) Ht-1
        auto one_minus_zt    = prog.insert_instruction(ins, op::sub{}, l1, zt);
        auto one_minus_zt_ht = prog.insert_instruction(ins, op::mul{}, one_minus_zt, ht);
        auto zt_ht1          = prog.insert_instruction(ins, op::mul{}, zt, sih);
        sih                  = prog.insert_instruction(ins, op::add{}, one_minus_zt_ht, zt_ht1);
        last_output          = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, sih);

        if(i < seq_len - 1)
        {
            if(is_forward)
            {
                hidden_states =
                    (seq_index == 0)
                        ? last_output
                        : prog.insert_instruction(ins, op::concat{0}, hidden_states, last_output);
            }
            else
            {
                hidden_states =
                    (seq_index == seq_len - 1)
                        ? last_output
                        : prog.insert_instruction(ins, op::concat{0}, last_output, hidden_states);
            }
        }
    }

    return {hidden_states, last_output};
}

std::vector<operation> rewrite_rnn::gru_actv_funcs(instruction_ref ins) const
{
    auto gru_op = any_cast<op::gru>(ins->get_operator());
    // before rewrite the gru operator, need to ensure
    // we have 4 actv funcs, even though a user does not
    // specifiy any actv func. If less than 4, use the
    // algorithm in parse_gru to make 4 actv functions
637
    if(gru_op.direction == op::rnn_direction::bidirectional)
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    {
        if(gru_op.actv_funcs.empty())
            return {op::sigmoid{}, op::tanh{}, op::sigmoid{}, op::tanh{}};
        else if(gru_op.actv_funcs.size() == 1)
            return {gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(0)};
        else if(gru_op.actv_funcs.size() == 2)
            return {gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(1),
                    gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(1)};
        else if(gru_op.actv_funcs.size() == 3)
            return {gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(1),
                    gru_op.actv_funcs.at(2),
                    gru_op.actv_funcs.at(0)};
        else
            return gru_op.actv_funcs;
    }
    else
    {
        if(gru_op.actv_funcs.empty())
            return {op::sigmoid{}, op::tanh{}};
        else if(gru_op.actv_funcs.size() == 1)
            return {gru_op.actv_funcs.at(0), gru_op.actv_funcs.at(0)};
        else
            return gru_op.actv_funcs;
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
670
671
672
673
674
// for lstm operators
void rewrite_rnn::apply_lstm(program& prog, instruction_ref ins) const
{
    assert(ins->name() == "lstm");
    auto args = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
675

Shucai Xiao's avatar
Shucai Xiao committed
676
    shape seq_shape         = args[0]->get_shape();
677
    std::size_t hidden_size = args[2]->get_shape().lens()[2];
Shucai Xiao's avatar
Shucai Xiao committed
678
679
    std::size_t batch_size  = seq_shape.lens()[1];
    shape::type_t type      = seq_shape.type();
Shucai Xiao's avatar
Shucai Xiao committed
680
    migraphx::shape ihc_shape{type, {1, batch_size, hidden_size}};
Shucai Xiao's avatar
Shucai Xiao committed
681
    std::vector<float> ihc_data(ihc_shape.elements(), 0.0);
Shucai Xiao's avatar
Shucai Xiao committed
682
683

    migraphx::shape pph_shape{type, {1, 3 * hidden_size}};
Shucai Xiao's avatar
Shucai Xiao committed
684
    std::vector<float> pph_data(pph_shape.elements(), 0.0);
Shucai Xiao's avatar
Shucai Xiao committed
685

Shucai Xiao's avatar
Shucai Xiao committed
686
687
    auto actv_funcs         = lstm_actv_funcs(ins);
    auto lstm_op            = any_cast<op::lstm>(ins->get_operator());
Shucai Xiao's avatar
Shucai Xiao committed
688
    op::rnn_direction dirct = lstm_op.direction;
Shucai Xiao's avatar
Shucai Xiao committed
689
690
691

    instruction_ref last_output{};
    instruction_ref last_cell_output{};
Shucai Xiao's avatar
Shucai Xiao committed
692
    if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
693
694
695
696
697
698
699
700
701
702
703
704
705
    {
        // input weight matrix
        // input weight matrix
        auto w_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[1]);
        auto w_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[1]);

        // hidden state weight matrix
        auto r_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[2]);
        auto r_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[2]);

        // process bias
        instruction_ref bias_forward = prog.end();
        instruction_ref bias_reverse = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
706
        if(args.size() >= 4 && args[3]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        {
            bias_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[3]);
            bias_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[3]);
        }

        // process intial hidden state, it is the 6th argument
        instruction_ref ih_forward{};
        instruction_ref ih_reverse{};
        if(args.size() >= 6 && args[5]->name() != "undefined")
        {
            ih_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[5]);
            ih_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[5]);
        }
        else
        {
            ih_forward = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
            ih_reverse = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
        }

        // process initial cell value
        instruction_ref ic_forward{};
        instruction_ref ic_reverse{};
Shucai Xiao's avatar
Shucai Xiao committed
729
        if(args.size() >= 7 && args[6]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
730
731
732
733
734
735
736
737
738
739
740
741
742
        {
            ic_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[6]);
            ic_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[6]);
        }
        else
        {
            ic_forward = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
            ic_reverse = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
        }

        // process weight of the peephole
        instruction_ref pph_forward{};
        instruction_ref pph_reverse{};
Shucai Xiao's avatar
Shucai Xiao committed
743
        if(args.size() == 8 && args[7]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
744
745
746
747
748
749
750
751
752
        {
            pph_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[7]);
            pph_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[7]);
        }
        else
        {
            pph_forward = prog.add_literal(migraphx::literal{pph_shape, pph_data});
            pph_reverse = prog.add_literal(migraphx::literal{pph_shape, pph_data});
        }
Shucai Xiao's avatar
Shucai Xiao committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

        auto ret_forward = lstm_cell(
            true,
            prog,
            ins,
            {args[0], w_forward, r_forward, bias_forward, ih_forward, ic_forward, pph_forward},
            lstm_op.input_forget,
            actv_funcs.at(0),
            actv_funcs.at(1),
            actv_funcs.at(2));

        auto ret_reverse = lstm_cell(
            false,
            prog,
            ins,
            {args[0], w_reverse, r_reverse, bias_reverse, ih_reverse, ic_reverse, pph_reverse},
            lstm_op.input_forget,
            actv_funcs.at(3),
            actv_funcs.at(4),
            actv_funcs.at(5));

        auto concat_output =
            prog.insert_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
Shucai Xiao's avatar
Shucai Xiao committed
776
777
778
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_output);

        // last cell output
779
780
        last_cell_output =
            prog.insert_instruction(ins, op::concat{0}, ret_forward[2], ret_reverse[2]);
Shucai Xiao's avatar
Shucai Xiao committed
781
782

        // the following logic is to ensure the last instruction is a concat
Shucai Xiao's avatar
Shucai Xiao committed
783
        if(ret_forward[0] == prog.end())
Shucai Xiao's avatar
Shucai Xiao committed
784
785
786
787
788
        {
            prog.replace_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
789
790
791
792
793
            ret_forward[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_forward[0], ret_forward[1]);
            ret_reverse[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_reverse[1], ret_reverse[0]);
            prog.replace_instruction(ins, op::concat{1}, {ret_forward[0], ret_reverse[0]});
Shucai Xiao's avatar
Shucai Xiao committed
794
795
796
797
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
798
        bool is_forward = (dirct == op::rnn_direction::forward);
Shucai Xiao's avatar
Shucai Xiao committed
799
800
801
802
803
804
        // weight matrices
        auto w = args[1];
        auto r = args[2];

        // bias
        instruction_ref bias = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
805
        if(args.size() >= 4 && args[3]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
806
807
808
809
810
811
        {
            bias = args[3];
        }

        // initial hidden state
        instruction_ref ih{};
Shucai Xiao's avatar
Shucai Xiao committed
812
        if(args.size() >= 6 && args[5]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
813
814
815
816
817
818
819
820
821
822
        {
            ih = args[5];
        }
        else
        {
            ih = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
        }

        // initial cell value
        instruction_ref ic{};
Shucai Xiao's avatar
Shucai Xiao committed
823
        if(args.size() >= 7 && args[6]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
        {
            ic = args[6];
        }
        else
        {
            ic = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
        }

        // process weight of the peephole
        instruction_ref pph{};
        if(args.size() == 8 && args[7]->name() != "undefined")
        {
            pph = args[7];
        }
        else
        {
            pph = prog.add_literal(migraphx::literal{pph_shape, pph_data});
        }
Shucai Xiao's avatar
Shucai Xiao committed
842
843

        auto ret = lstm_cell(is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
844
845
846
847
848
849
850
851
                             prog,
                             ins,
                             {args[0], w, r, bias, ih, ic, pph},
                             lstm_op.input_forget,
                             actv_funcs.at(0),
                             actv_funcs.at(1),
                             actv_funcs.at(2));

Shucai Xiao's avatar
Shucai Xiao committed
852
        last_output      = prog.insert_instruction(ins, op::squeeze{{0}}, ret[1]);
853
        last_cell_output = ret[2];
Shucai Xiao's avatar
Shucai Xiao committed
854
        if(ret[0] == prog.end())
Shucai Xiao's avatar
Shucai Xiao committed
855
856
857
858
859
860
861
862
863
864
865
866
867
        {
            prog.replace_instruction(ins, op::concat{0}, ret[1]);
        }
        else
        {
            auto concat_arg0 = is_forward ? ret[0] : ret[1];
            auto concat_arg1 = is_forward ? ret[1] : ret[0];
            prog.replace_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
        }
    }

    // replace the corresponding lstm_last_output instruction
    // with the last_output, and the lstm_last_cell_output with
Shucai Xiao's avatar
Shucai Xiao committed
868
    // the last_cell_output. The while loop is to handle the case
Shucai Xiao's avatar
Shucai Xiao committed
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
    // of multiple lstm_last_output and lstm_last_cell_output
    // operators
    auto last_output_it = ins->outputs().begin();
    while(last_output_it != ins->outputs().end())
    {
        last_output_it = std::find_if(last_output_it, ins->outputs().end(), [](auto i) {
            return i->name() == "lstm_last_output";
        });

        if(last_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_output_it, last_output);
            last_output_it++;
        }
    }

    auto last_cell_output_it = ins->outputs().begin();
    while(last_cell_output_it != ins->outputs().end())
    {
        last_cell_output_it = std::find_if(last_cell_output_it, ins->outputs().end(), [](auto i) {
            return i->name() == "lstm_last_cell_output";
        });

        if(last_cell_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_cell_output_it, last_cell_output);
            last_cell_output_it++;
        }
Shucai Xiao's avatar
Shucai Xiao committed
897
    }
Shucai Xiao's avatar
Shucai Xiao committed
898
899
900
}

std::vector<instruction_ref> rewrite_rnn::lstm_cell(bool is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
901
902
903
                                                    program& prog,
                                                    instruction_ref ins,
                                                    std::vector<instruction_ref> inputs,
Shucai Xiao's avatar
Shucai Xiao committed
904
                                                    int input_forget,
Shucai Xiao's avatar
Shucai Xiao committed
905
906
907
                                                    const operation& actv_func1,
                                                    const operation& actv_func2,
                                                    const operation& actv_func3) const
Shucai Xiao's avatar
Shucai Xiao committed
908
{
Shucai Xiao's avatar
Shucai Xiao committed
909
910
    // must have 7 args in the input vector
    assert(inputs.size() == 7);
Shucai Xiao's avatar
Shucai Xiao committed
911
912
913
    auto seq  = inputs.at(0);
    auto w    = inputs.at(1);
    auto r    = inputs.at(2);
Shucai Xiao's avatar
Shucai Xiao committed
914
    auto bias = inputs.at(3);
Shucai Xiao's avatar
Shucai Xiao committed
915
916
917
    auto ih   = inputs.at(4);
    auto ic   = inputs.at(5);
    auto pph  = inputs.at(6);
Shucai Xiao's avatar
Shucai Xiao committed
918

Shucai Xiao's avatar
Shucai Xiao committed
919
920
921
922
923
    instruction_ref hidden_states = prog.end();
    instruction_ref last_output{};
    instruction_ref last_cell_output{};

    migraphx::shape seq_shape = seq->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
924
    migraphx::shape r_shape   = r->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
925
    long seq_len              = static_cast<long>(seq_shape.lens()[0]);
Shucai Xiao's avatar
Shucai Xiao committed
926
927
928
929
    long hs                   = static_cast<long>(r_shape.lens()[2]);

    std::vector<int64_t> perm{1, 0};
    // w matrix
Shucai Xiao's avatar
Shucai Xiao committed
930
931
    auto sw      = prog.insert_instruction(ins, op::squeeze{{0}}, w);
    auto wi      = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sw);
Shucai Xiao's avatar
Shucai Xiao committed
932
933
    auto tran_wi = prog.insert_instruction(ins, op::transpose{perm}, wi);

Shucai Xiao's avatar
Shucai Xiao committed
934
    auto wo      = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sw);
Shucai Xiao's avatar
Shucai Xiao committed
935
936
    auto tran_wo = prog.insert_instruction(ins, op::transpose{perm}, wo);

Shucai Xiao's avatar
Shucai Xiao committed
937
    auto wf      = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sw);
Shucai Xiao's avatar
Shucai Xiao committed
938
939
    auto tran_wf = prog.insert_instruction(ins, op::transpose{perm}, wf);

Shucai Xiao's avatar
Shucai Xiao committed
940
    auto wc      = prog.insert_instruction(ins, op::slice{{0}, {3 * hs}, {4 * hs}}, sw);
Shucai Xiao's avatar
Shucai Xiao committed
941
942
943
    auto tran_wc = prog.insert_instruction(ins, op::transpose{perm}, wc);

    // r matrix
Shucai Xiao's avatar
Shucai Xiao committed
944
945
    auto sr      = prog.insert_instruction(ins, op::squeeze{{0}}, r);
    auto ri      = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sr);
Shucai Xiao's avatar
Shucai Xiao committed
946
947
    auto tran_ri = prog.insert_instruction(ins, op::transpose{perm}, ri);

Shucai Xiao's avatar
Shucai Xiao committed
948
    auto ro      = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sr);
Shucai Xiao's avatar
Shucai Xiao committed
949
950
    auto tran_ro = prog.insert_instruction(ins, op::transpose{perm}, ro);

Shucai Xiao's avatar
Shucai Xiao committed
951
    auto rf      = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sr);
Shucai Xiao's avatar
Shucai Xiao committed
952
953
    auto tran_rf = prog.insert_instruction(ins, op::transpose{perm}, rf);

Shucai Xiao's avatar
Shucai Xiao committed
954
    auto rc      = prog.insert_instruction(ins, op::slice{{0}, {3 * hs}, {4 * hs}}, sr);
Shucai Xiao's avatar
Shucai Xiao committed
955
956
957
958
959
960
    auto tran_rc = prog.insert_instruction(ins, op::transpose{perm}, rc);

    // initial hidden state
    auto sih = prog.insert_instruction(ins, op::squeeze{{0}}, ih);

    // initial cell state
961
    auto sic      = prog.insert_instruction(ins, op::squeeze{{0}}, ic);
Shucai Xiao's avatar
Shucai Xiao committed
962
963
    auto ic_shape = sic->get_shape();

964
965
966
967
968
    // bias
    instruction_ref bi_brcst{};
    instruction_ref bo_brcst{};
    instruction_ref bf_brcst{};
    instruction_ref bc_brcst{};
Shucai Xiao's avatar
Shucai Xiao committed
969
    if(bias != prog.end())
970
971
    {
        auto sbias = prog.insert_instruction(ins, op::squeeze{{0}}, bias);
Shucai Xiao's avatar
Shucai Xiao committed
972
973
974
975
976
977
978
979
        auto bxi   = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sbias);
        auto bhi   = prog.insert_instruction(ins, op::slice{{0}, {4 * hs}, {5 * hs}}, sbias);
        auto bi    = prog.insert_instruction(ins, op::add{}, bxi, bhi);
        bi_brcst   = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, bi);

        auto bxo = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sbias);
        auto bho = prog.insert_instruction(ins, op::slice{{0}, {5 * hs}, {6 * hs}}, sbias);
        auto bo  = prog.insert_instruction(ins, op::add{}, bxo, bho);
980
981
        bo_brcst = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, bo);

Shucai Xiao's avatar
Shucai Xiao committed
982
983
984
        auto bxf = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sbias);
        auto bhf = prog.insert_instruction(ins, op::slice{{0}, {5 * hs}, {6 * hs}}, sbias);
        auto bf  = prog.insert_instruction(ins, op::add{}, bxf, bhf);
985
986
        bf_brcst = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, bf);

Shucai Xiao's avatar
Shucai Xiao committed
987
988
989
        auto bxc = prog.insert_instruction(ins, op::slice{{0}, {3 * hs}, {4 * hs}}, sbias);
        auto bhc = prog.insert_instruction(ins, op::slice{{0}, {7 * hs}, {8 * hs}}, sbias);
        auto bc  = prog.insert_instruction(ins, op::add{}, bxc, bhc);
990
991
992
        bc_brcst = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, bc);
    }

Shucai Xiao's avatar
Shucai Xiao committed
993
    // peep hole
Shucai Xiao's avatar
Shucai Xiao committed
994
995
    auto spph       = prog.insert_instruction(ins, op::squeeze{{0}}, pph);
    auto pphi       = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, spph);
996
    auto pphi_brcst = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, pphi);
Shucai Xiao's avatar
Shucai Xiao committed
997
    pphi_brcst      = prog.insert_instruction(ins, op::contiguous{}, pphi_brcst);
Shucai Xiao's avatar
Shucai Xiao committed
998

Shucai Xiao's avatar
Shucai Xiao committed
999
    auto ppho       = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, spph);
1000
    auto ppho_brcst = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, ppho);
Shucai Xiao's avatar
Shucai Xiao committed
1001
    ppho_brcst      = prog.insert_instruction(ins, op::contiguous{}, ppho_brcst);
Shucai Xiao's avatar
Shucai Xiao committed
1002

Shucai Xiao's avatar
Shucai Xiao committed
1003
    auto pphf       = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, spph);
1004
    auto pphf_brcst = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, pphf);
Shucai Xiao's avatar
Shucai Xiao committed
1005
    pphf_brcst      = prog.insert_instruction(ins, op::contiguous{}, pphf_brcst);
Shucai Xiao's avatar
Shucai Xiao committed
1006

Shucai Xiao's avatar
Shucai Xiao committed
1007
    for(long i = 0; i < seq_len; ++i)
Shucai Xiao's avatar
Shucai Xiao committed
1008
1009
1010
    {
        long seq_index = is_forward ? i : (seq_len - 1 - i);
        auto xt = prog.insert_instruction(ins, op::slice{{0}, {seq_index}, {seq_index + 1}}, seq);
Shucai Xiao's avatar
Shucai Xiao committed
1011
        xt      = prog.insert_instruction(ins, op::squeeze{{0}}, xt);
Shucai Xiao's avatar
Shucai Xiao committed
1012
1013

        // equation it = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)
Shucai Xiao's avatar
Shucai Xiao committed
1014
1015
1016
        auto xt_wi          = prog.insert_instruction(ins, op::dot{}, xt, tran_wi);
        auto ht_ri          = prog.insert_instruction(ins, op::dot{}, sih, tran_ri);
        auto pphi_ct        = prog.insert_instruction(ins, op::mul{}, pphi_brcst, sic);
1017
        auto it_before_actv = prog.insert_instruction(ins, op::add{}, xt_wi, ht_ri);
Shucai Xiao's avatar
Shucai Xiao committed
1018
        it_before_actv      = prog.insert_instruction(ins, op::add{}, it_before_actv, pphi_ct);
Shucai Xiao's avatar
Shucai Xiao committed
1019
        if(bias != prog.end())
1020
1021
1022
1023
1024
1025
        {
            it_before_actv = prog.insert_instruction(ins, op::add{}, it_before_actv, bi_brcst);
        }
        auto it = prog.insert_instruction(ins, actv_func1, it_before_actv);

        // equation ft = f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)
Shucai Xiao's avatar
Shucai Xiao committed
1026
1027
1028
        auto xt_wf          = prog.insert_instruction(ins, op::dot{}, xt, tran_wf);
        auto ht_rf          = prog.insert_instruction(ins, op::dot{}, sih, tran_rf);
        auto pphf_ct        = prog.insert_instruction(ins, op::mul{}, pphf_brcst, sic);
1029
        auto ft_before_actv = prog.insert_instruction(ins, op::add{}, xt_wf, ht_rf);
Shucai Xiao's avatar
Shucai Xiao committed
1030
        ft_before_actv      = prog.insert_instruction(ins, op::add{}, ft_before_actv, pphf_ct);
Shucai Xiao's avatar
Shucai Xiao committed
1031
        if(bias != prog.end())
1032
1033
1034
1035
1036
1037
        {
            ft_before_actv = prog.insert_instruction(ins, op::add{}, ft_before_actv, bf_brcst);
        }
        auto ft = prog.insert_instruction(ins, actv_func1, ft_before_actv);

        // equation ct = g(Xt*(Wc^T) + Ht-1*(Rc^T) + Wbc + Rbc)
Shucai Xiao's avatar
Shucai Xiao committed
1038
1039
        auto xt_wc          = prog.insert_instruction(ins, op::dot{}, xt, tran_wc);
        auto ht_rc          = prog.insert_instruction(ins, op::dot{}, sih, tran_rc);
1040
        auto ct_before_actv = prog.insert_instruction(ins, op::add{}, xt_wc, ht_rc);
Shucai Xiao's avatar
Shucai Xiao committed
1041
        if(bias != prog.end())
1042
1043
1044
1045
1046
1047
        {
            ct_before_actv = prog.insert_instruction(ins, op::add{}, ct_before_actv, bc_brcst);
        }
        auto ct = prog.insert_instruction(ins, actv_func2, ct_before_actv);

        // equation Ct = ft (.) Ct-1 + it (.) ct
Shucai Xiao's avatar
Shucai Xiao committed
1048
1049
1050
        auto ft_cell     = prog.insert_instruction(ins, op::mul{}, ft, sic);
        auto it_ct       = prog.insert_instruction(ins, op::mul{}, it, ct);
        auto cellt       = prog.insert_instruction(ins, op::add{}, ft_cell, it_ct);
1051
1052
1053
        last_cell_output = cellt;

        // ot = f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)
Shucai Xiao's avatar
Shucai Xiao committed
1054
1055
1056
        auto xt_wo          = prog.insert_instruction(ins, op::dot{}, xt, tran_wo);
        auto ht_ro          = prog.insert_instruction(ins, op::dot{}, sih, tran_ro);
        auto ppho_cellt     = prog.insert_instruction(ins, op::mul{}, ppho_brcst, cellt);
1057
        auto ot_before_actv = prog.insert_instruction(ins, op::add{}, xt_wo, ht_ro);
Shucai Xiao's avatar
Shucai Xiao committed
1058
        ot_before_actv      = prog.insert_instruction(ins, op::add{}, ot_before_actv, ppho_cellt);
Shucai Xiao's avatar
Shucai Xiao committed
1059
        if(bias != prog.end())
1060
1061
1062
1063
1064
1065
1066
        {
            ot_before_actv = prog.insert_instruction(ins, op::add{}, ot_before_actv, bo_brcst);
        }
        auto ot = prog.insert_instruction(ins, actv_func1, ot_before_actv);

        // Ht = ot (.) h(Ct)
        auto h_cellt = prog.insert_instruction(ins, actv_func3, cellt);
Shucai Xiao's avatar
Shucai Xiao committed
1067
        auto ht      = prog.insert_instruction(ins, op::mul{}, ot, h_cellt);
1068
1069
1070
1071
1072
1073

        sic = cellt;
        sih = ht;

        last_output = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, ht);

Shucai Xiao's avatar
Shucai Xiao committed
1074
        if(i < seq_len - 1)
1075
        {
Shucai Xiao's avatar
Shucai Xiao committed
1076
            if(i == 0)
1077
            {
Shucai Xiao's avatar
Shucai Xiao committed
1078
                hidden_states = last_output;
1079
1080
1081
1082
1083
            }
            else
            {
                auto concat_arg0 = is_forward ? hidden_states : last_output;
                auto concat_arg1 = is_forward ? last_output : hidden_states;
Shucai Xiao's avatar
Shucai Xiao committed
1084
1085
                hidden_states =
                    prog.insert_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
1086
1087
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1088
    }
1089
1090
1091
1092

    last_cell_output = prog.insert_instruction(ins, op::unsqueeze{{0}}, last_cell_output);

    return {hidden_states, last_output, last_cell_output};
Shucai Xiao's avatar
Shucai Xiao committed
1093
1094
1095
1096
1097
1098
1099
1100
1101
}

std::vector<operation> rewrite_rnn::lstm_actv_funcs(instruction_ref ins) const
{
    auto lstm_op = any_cast<op::lstm>(ins->get_operator());
    // before rewrite the lstm operator, need to ensure
    // we have 6 actv funcs, even though a user does not
    // specifiy any actv func. If less than 46, use the
    // algorithm in parse_lstm to make 6 actv functions
Shucai Xiao's avatar
Shucai Xiao committed
1102
    const auto& actv_funcs     = lstm_op.actv_funcs;
Shucai Xiao's avatar
Shucai Xiao committed
1103
    std::size_t num_actv_funcs = actv_funcs.size();
Shucai Xiao's avatar
Shucai Xiao committed
1104
    if(lstm_op.direction == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1105
1106
1107
1108
    {
        switch(num_actv_funcs)
        {
        case 0:
Shucai Xiao's avatar
Shucai Xiao committed
1109
            return {op::sigmoid{}, op::tanh{}, op::tanh{}, op::sigmoid{}, op::tanh{}, op::tanh{}};
Shucai Xiao's avatar
Shucai Xiao committed
1110
1111

        case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1112
1113
1114
1115
1116
1117
            return {actv_funcs.at(0),
                    actv_funcs.at(0),
                    actv_funcs.at(0),
                    actv_funcs.at(0),
                    actv_funcs.at(0),
                    actv_funcs.at(0)};
Shucai Xiao's avatar
Shucai Xiao committed
1118
1119

        case 2:
Shucai Xiao's avatar
Shucai Xiao committed
1120
1121
1122
1123
1124
1125
1126
            return {actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(1),
                    actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(1)};

Shucai Xiao's avatar
Shucai Xiao committed
1127
        case 3:
Shucai Xiao's avatar
Shucai Xiao committed
1128
1129
1130
1131
1132
1133
            return {actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(2),
                    actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1134
1135

        case 4:
Shucai Xiao's avatar
Shucai Xiao committed
1136
1137
1138
1139
1140
1141
            return {actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(2),
                    actv_funcs.at(3),
                    actv_funcs.at(3),
                    actv_funcs.at(3)};
Shucai Xiao's avatar
Shucai Xiao committed
1142
1143

        case 5:
Shucai Xiao's avatar
Shucai Xiao committed
1144
1145
1146
1147
1148
1149
            return {actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(2),
                    actv_funcs.at(3),
                    actv_funcs.at(4),
                    actv_funcs.at(4)};
Shucai Xiao's avatar
Shucai Xiao committed
1150

Shucai Xiao's avatar
Shucai Xiao committed
1151
        default: return actv_funcs;
Shucai Xiao's avatar
Shucai Xiao committed
1152
1153
1154
1155
1156
1157
        }
    }
    else
    {
        switch(num_actv_funcs)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1158
        case 0: return {op::sigmoid{}, op::tanh{}, op::tanh{}};
Shucai Xiao's avatar
Shucai Xiao committed
1159

Shucai Xiao's avatar
Shucai Xiao committed
1160
        case 1: return {actv_funcs.at(0), actv_funcs.at(0), actv_funcs.at(0)};
Shucai Xiao's avatar
Shucai Xiao committed
1161

Shucai Xiao's avatar
Shucai Xiao committed
1162
1163
1164
        case 2: return {actv_funcs.at(0), actv_funcs.at(1), actv_funcs.at(1)};

        default: return actv_funcs;
Shucai Xiao's avatar
Shucai Xiao committed
1165
1166
1167
1168
        }
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
1169
1170
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx