rewrite_rnn.cpp 41 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
2
3
4
5
6
7
8
9
10
#include <migraphx/rewrite_rnn.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

Shucai Xiao's avatar
Shucai Xiao committed
11
void rewrite_rnn::apply(program& prog) const
Shucai Xiao's avatar
Shucai Xiao committed
12
13
14
{
    for(auto ins : iterator_for(prog))
    {
Shucai Xiao's avatar
Shucai Xiao committed
15
        if(ins->name() == "rnn")
Shucai Xiao's avatar
Shucai Xiao committed
16
        {
Shucai Xiao's avatar
Shucai Xiao committed
17
            apply_vanilla_rnn(prog, ins);
18
        }
Shucai Xiao's avatar
Shucai Xiao committed
19

20
21
22
        if(ins->name() == "gru")
        {
            apply_gru(prog, ins);
Shucai Xiao's avatar
Shucai Xiao committed
23
        }
Shucai Xiao's avatar
Shucai Xiao committed
24
    }
25
26
}

Shucai Xiao's avatar
Shucai Xiao committed
27
void rewrite_rnn::apply_vanilla_rnn(program& prog, instruction_ref ins) const
28
29
30
31
{
    assert(ins->name() == "rnn");
    // could be 3 to 6 inputs, but the parse_rnn function will
    // append undefined operators to make 6 arguments when parsing
Shucai Xiao's avatar
Shucai Xiao committed
32
    // an onnx file. Another case is user can have num of arguments
33
34
35
36
37
38
39
40
41
42
    // when writing their program.
    auto args = ins->inputs();

    shape seq_shape         = args[0]->get_shape();
    std::size_t hidden_size = args[1]->get_shape().lens()[1];
    std::size_t batch_size  = seq_shape.lens()[1];
    shape::type_t type      = seq_shape.type();
    migraphx::shape ih_shape{type, {1, batch_size, hidden_size}};
    std::vector<float> data(ih_shape.elements(), 0);

Shucai Xiao's avatar
Shucai Xiao committed
43
    auto actv_funcs                = vanilla_rnn_actv_funcs(ins);
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    auto rnn_op                    = any_cast<op::rnn>(ins->get_operator());
    op::rnn::rnn_direction_t dicrt = rnn_op.direction;
    instruction_ref last_output{};
    if(dicrt == op::rnn::bidirectional)
    {
        // input weight matrix
        auto w_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[1]);
        auto w_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[1]);

        // hidden state weight matrix
        auto r_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[2]);
        auto r_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[2]);

        // process bias
        instruction_ref bias_forward = prog.end();
        instruction_ref bias_reverse = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
60
        if(args.size() >= 4 && args[3]->name() != "undefined")
61
62
63
64
65
66
67
68
69
        {
            bias_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[3]);
            bias_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[3]);
        }

        // process intial hidden state, it could be the 6th argument
        // or the 5th one (if the sequence len argument is ignored)
        instruction_ref ih_forward{};
        instruction_ref ih_reverse{};
Shucai Xiao's avatar
Shucai Xiao committed
70
        if(args.size() == 6 && args[5]->name() != "undefined")
71
72
73
74
75
76
77
78
79
80
        {
            ih_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[5]);
            ih_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[5]);
        }
        else
        {
            ih_forward = prog.add_literal(migraphx::literal{ih_shape, data});
            ih_reverse = prog.add_literal(migraphx::literal{ih_shape, data});
        }

Shucai Xiao's avatar
Shucai Xiao committed
81
        auto ret_forward = vanilla_rnn_cell(true,
Shucai Xiao's avatar
Shucai Xiao committed
82
83
84
85
86
87
88
89
                                            prog,
                                            ins,
                                            args[0],
                                            w_forward,
                                            r_forward,
                                            bias_forward,
                                            ih_forward,
                                            actv_funcs.at(0));
Shucai Xiao's avatar
Shucai Xiao committed
90
        auto ret_reverse = vanilla_rnn_cell(false,
Shucai Xiao's avatar
Shucai Xiao committed
91
92
93
94
95
96
97
98
                                            prog,
                                            ins,
                                            args[0],
                                            w_reverse,
                                            r_reverse,
                                            bias_reverse,
                                            ih_reverse,
                                            actv_funcs.at(1));
99
100
101
102
103
104
105
106
107
108
109

        auto concat_output =
            prog.insert_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_output);

        // The following logic is to ensure the last instruction rewritten from
        // rnn operator is a concat instruction
        // sequence len is 1
        instruction_ref hidden_output{};
        if(ret_forward[0] == prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
110
111
            hidden_output =
                prog.replace_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
112
113
114
115
116
117
118
        }
        else
        {
            ret_forward[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_forward[0], ret_forward[1]);
            ret_reverse[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_reverse[1], ret_reverse[0]);
Shucai Xiao's avatar
Shucai Xiao committed
119
120
            hidden_output =
                prog.replace_instruction(ins, op::concat{1}, {ret_forward[0], ret_reverse[0]});
121
122
123
124
125
126
127
128
129
130
131
132
133
        }
    }
    else
    {
        bool is_forward = (dicrt == op::rnn::forward);
        // input weight matrix
        auto w = args[1];

        // hidden state weight matrix
        auto r = args[2];

        // process bias and initial hidden state
        instruction_ref bias = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
134
        if(args.size() >= 4 && args[3]->name() != "undefined")
135
136
137
138
139
140
        {
            bias = args[3];
        }

        // process intial hidden state
        instruction_ref ih;
Shucai Xiao's avatar
Shucai Xiao committed
141
        if(args.size() == 6 && args[5]->name() != "undefined")
142
143
144
145
146
147
148
149
        {
            ih = args[5];
        }
        else
        {
            ih = prog.add_literal(migraphx::literal{ih_shape, data});
        }

Shucai Xiao's avatar
Shucai Xiao committed
150
151
        auto ret =
            vanilla_rnn_cell(is_forward, prog, ins, args[0], w, r, bias, ih, actv_funcs.at(0));
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, ret[1]);

        // following logic is to ensure the last instruction is a
        // concat instruction
        // sequence len is 1
        instruction_ref hidden_output{};
        if(ret[0] == prog.end())
        {
            hidden_output = prog.replace_instruction(ins, op::concat{0}, ret[1]);
        }
        else
        {
            auto concat_arg0 = is_forward ? ret[0] : ret[1];
            auto concat_arg1 = is_forward ? ret[1] : ret[0];
Shucai Xiao's avatar
Shucai Xiao committed
166
            hidden_output = prog.replace_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        }
    }

    // search its output to find if there are rnn_last_output operator
    // while loop to handle case of multiple rnn_last_output operators
    auto last_output_it = ins->outputs().begin();
    while(last_output_it != ins->outputs().end())
    {
        last_output_it = std::find_if(last_output_it, ins->outputs().end(), [](auto i) {
            return i->name() == "rnn_last_output";
        });

        if(last_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_output_it, last_output);
            last_output_it++;
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
185
186
}

Shucai Xiao's avatar
Shucai Xiao committed
187
std::vector<instruction_ref> rewrite_rnn::vanilla_rnn_cell(bool is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
192
193
194
195
                                                           program& prog,
                                                           instruction_ref ins,
                                                           instruction_ref input,
                                                           instruction_ref w,
                                                           instruction_ref r,
                                                           instruction_ref bias,
                                                           instruction_ref ih,
                                                           operation& actv_func) const
Shucai Xiao's avatar
Shucai Xiao committed
196
{
Shucai Xiao's avatar
Shucai Xiao committed
197
198
    // squeeze and transpose w
    std::vector<int64_t> perm{1, 0};
Shucai Xiao's avatar
Shucai Xiao committed
199
    auto sw      = prog.insert_instruction(ins, op::squeeze{{0}}, w);
Shucai Xiao's avatar
Shucai Xiao committed
200
    auto tran_sw = prog.insert_instruction(ins, op::transpose{perm}, sw);
Shucai Xiao's avatar
Shucai Xiao committed
201
202

    // squeeze and transpose r
Shucai Xiao's avatar
Shucai Xiao committed
203
    auto sr      = prog.insert_instruction(ins, op::squeeze{{0}}, r);
Shucai Xiao's avatar
Shucai Xiao committed
204
205
206
207
208
209
    auto tran_sr = prog.insert_instruction(ins, op::transpose{perm}, sr);

    // initial hidden state
    auto sih = prog.insert_instruction(ins, op::squeeze{{0}}, ih);

    // bias
Shucai Xiao's avatar
Shucai Xiao committed
210
    if(bias != prog.end())
Shucai Xiao's avatar
Shucai Xiao committed
211
    {
Shucai Xiao's avatar
Shucai Xiao committed
212
213
214
215
216
217
        long hs    = r->get_shape().lens()[2];
        auto sbias = prog.insert_instruction(ins, op::squeeze{{0}}, bias);
        auto wb    = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sbias);
        auto rb    = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sbias);
        auto b     = prog.insert_instruction(ins, op::add{}, wb, rb);
        bias       = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, b);
Shucai Xiao's avatar
Shucai Xiao committed
218
219
    }

Shucai Xiao's avatar
Shucai Xiao committed
220
221
    instruction_ref hidden_out = prog.end();
    instruction_ref last_out{};
Shucai Xiao's avatar
Shucai Xiao committed
222
223
    last_out            = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, sih);
    std::size_t seq_len = input->get_shape().lens()[0];
Shucai Xiao's avatar
Shucai Xiao committed
224
225
    for(std::size_t i = 0; i < seq_len; i++)
    {
Shucai Xiao's avatar
Shucai Xiao committed
226
        long seq_index = is_forward ? i : (seq_len - 1 - i);
Shucai Xiao's avatar
Shucai Xiao committed
227
228
        auto xt = prog.insert_instruction(ins, op::slice{{0}, {seq_index}, {seq_index + 1}}, input);
        xt      = prog.insert_instruction(ins, op::squeeze{{0}}, xt);
Shucai Xiao's avatar
Shucai Xiao committed
229
230
231
232
        auto xt_wi = prog.insert_instruction(ins, op::dot{}, xt, tran_sw);
        auto ht_ri = prog.insert_instruction(ins, op::dot{}, sih, tran_sr);
        auto xt_ht = prog.insert_instruction(ins, op::add{}, xt_wi, ht_ri);
        instruction_ref ht;
Shucai Xiao's avatar
Shucai Xiao committed
233
234
        if(bias != prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
235
            ht = prog.insert_instruction(ins, op::add{}, xt_ht, bias);
Shucai Xiao's avatar
Shucai Xiao committed
236
237
238
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
239
            ht = xt_ht;
Shucai Xiao's avatar
Shucai Xiao committed
240
241
242
        }

        // apply activation function
Shucai Xiao's avatar
Shucai Xiao committed
243
        ht  = prog.insert_instruction(ins, actv_func, ht);
Shucai Xiao's avatar
Shucai Xiao committed
244
        sih = ht;
Shucai Xiao's avatar
Shucai Xiao committed
245

Shucai Xiao's avatar
Shucai Xiao committed
246
247
248
        // add the dimensions of sequence length (axis 0 for sequence length,
        // axis 1 for num_directions
        last_out = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, ht);
Shucai Xiao's avatar
Shucai Xiao committed
249

Shucai Xiao's avatar
Shucai Xiao committed
250
251
252
        // concatenation for the last last_out is performed in the apply()
        // function to ensure the last instruction is concat, then we have
        // output inserted
Shucai Xiao's avatar
Shucai Xiao committed
253
        if(i < seq_len - 1)
Shucai Xiao's avatar
Shucai Xiao committed
254
        {
Shucai Xiao's avatar
Shucai Xiao committed
255
256
            if(is_forward)
            {
Shucai Xiao's avatar
Shucai Xiao committed
257
258
259
260
                hidden_out =
                    (seq_index == 0)
                        ? last_out
                        : prog.insert_instruction(ins, op::concat{0}, hidden_out, last_out);
Shucai Xiao's avatar
Shucai Xiao committed
261
262
263
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
264
265
266
267
                hidden_out =
                    (seq_index == seq_len - 1)
                        ? last_out
                        : prog.insert_instruction(ins, op::concat{0}, last_out, hidden_out);
Shucai Xiao's avatar
Shucai Xiao committed
268
            }
Shucai Xiao's avatar
Shucai Xiao committed
269
270
271
        }
    }

272
    return {hidden_out, last_out};
Shucai Xiao's avatar
Shucai Xiao committed
273
274
}

Shucai Xiao's avatar
Shucai Xiao committed
275
std::vector<operation> rewrite_rnn::vanilla_rnn_actv_funcs(instruction_ref ins) const
276
277
{
    auto rnn_op = any_cast<op::rnn>(ins->get_operator());
Shucai Xiao's avatar
Shucai Xiao committed
278
279
280
281
    // could be 3 to 6 inputs, but the parse_gru function will
    // append undefined operators to make 6 arguments when parsing
    // an onnx file. Another case is user can have any num of arguments
    // when writing their program.
Shucai Xiao's avatar
Shucai Xiao committed
282
    if(rnn_op.direction == op::rnn::bidirectional)
283
    {
Shucai Xiao's avatar
Shucai Xiao committed
284
        if(rnn_op.actv_funcs.empty())
285
286
287
288
        {
            // default is tanh
            return {op::tanh{}, op::tanh{}};
        }
Shucai Xiao's avatar
Shucai Xiao committed
289
        else if(rnn_op.actv_funcs.size() == 1)
290
291
292
293
294
295
296
297
298
299
        {
            return {rnn_op.actv_funcs.at(0), rnn_op.actv_funcs.at(0)};
        }
        else
        {
            return rnn_op.actv_funcs;
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
300
        if(rnn_op.actv_funcs.empty())
301
302
303
304
305
306
307
308
309
310
311
        {
            // default is tanh
            return {op::tanh{}};
        }
        else
        {
            return rnn_op.actv_funcs;
        }
    }
}

312
313
314
315
void rewrite_rnn::apply_gru(program& prog, instruction_ref ins) const
{
    assert(ins->name() == "gru");
    const auto actv_funcs = gru_actv_funcs(ins);
Shucai Xiao's avatar
Shucai Xiao committed
316
317
318
319
    // could be 3 to 6 inputs, but the parse_gru function will
    // append undefined operators to make 6 arguments when parsing
    // an onnx file. Another case is user can have num of arguments
    // when writing their program.
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    auto args = ins->inputs();

    shape seq_shape         = args[0]->get_shape();
    std::size_t hidden_size = args[2]->get_shape().lens()[2];
    std::size_t batch_size  = seq_shape.lens()[1];
    shape::type_t type      = seq_shape.type();
    migraphx::shape ih_shape{type, {1, batch_size, hidden_size}};
    std::vector<float> data(ih_shape.elements(), 0.0);

    auto gru_op                    = any_cast<op::gru>(ins->get_operator());
    op::gru::gru_direction_t dicrt = gru_op.direction;
    instruction_ref last_output{};
    if(dicrt == op::gru::bidirectional)
    {
        // w weight matrix
        auto w_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[1]);
        auto w_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[1]);

        // r weight matrix
        auto r_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[2]);
        auto r_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[2]);

        // bias
        instruction_ref bias_forward = prog.end();
        instruction_ref bias_reverse = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
345
        if(args.size() >= 4 && args[3]->name() != "undefined")
346
347
348
349
350
351
352
353
        {
            bias_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[3]);
            bias_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[3]);
        }

        // intial hidden state
        instruction_ref ih_forward{};
        instruction_ref ih_reverse{};
Shucai Xiao's avatar
Shucai Xiao committed
354
        if(args.size() == 6 && args[5]->name() != "undefined")
355
356
357
358
359
360
361
362
363
364
        {
            ih_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[5]);
            ih_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[5]);
        }
        else
        {
            ih_forward = prog.add_literal(migraphx::literal{ih_shape, data});
            ih_reverse = prog.add_literal(migraphx::literal{ih_shape, data});
        }

Shucai Xiao's avatar
Shucai Xiao committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        auto ret_forward = gru_cell(true,
                                    prog,
                                    ins,
                                    {args[0], w_forward, r_forward, bias_forward, ih_forward},
                                    gru_op.linear_before_reset,
                                    actv_funcs.at(0),
                                    actv_funcs.at(1));

        auto ret_reverse = gru_cell(false,
                                    prog,
                                    ins,
                                    {args[0], w_reverse, r_reverse, bias_reverse, ih_reverse},
                                    gru_op.linear_before_reset,
                                    actv_funcs.at(2),
                                    actv_funcs.at(3));
380
381
382
383
384
385
386
387
388

        auto concat_output =
            prog.insert_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_output);

        // The following logic is to ensure the last instruction rewritten
        // from gru operator is a concat
        if(ret_forward[0] == prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
389
            prog.replace_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
390
391
392
393
394
395
396
        }
        else
        {
            ret_forward[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_forward[0], ret_forward[1]);
            ret_reverse[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_reverse[1], ret_reverse[0]);
Shucai Xiao's avatar
Shucai Xiao committed
397
            prog.replace_instruction(ins, op::concat{1}, {ret_forward[0], ret_reverse[0]});
398
399
400
401
402
403
404
405
406
407
408
        }
    }
    else
    {
        bool is_forward = (dicrt == op::gru::forward);
        // weight matrix
        auto w = args[1];
        auto r = args[2];

        // bias
        instruction_ref bias = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
409
        if(args.size() >= 4 && args[3]->name() != "undefined")
410
411
412
413
414
415
        {
            bias = args[3];
        }

        // intial hidden state
        instruction_ref ih{};
Shucai Xiao's avatar
Shucai Xiao committed
416
        if(args.size() == 6 && args[5]->name() != "undefined")
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        {
            ih = args[5];
        }
        else
        {
            ih = prog.add_literal(migraphx::literal{ih_shape, data});
        }

        auto ret = gru_cell(is_forward,
                            prog,
                            ins,
                            {args[0], w, r, bias, ih},
                            gru_op.linear_before_reset,
                            actv_funcs.at(0),
                            actv_funcs.at(1));

        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, ret[1]);

        if(ret[0] == prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
437
            prog.replace_instruction(ins, op::concat{0}, ret[1]);
438
439
440
441
442
        }
        else
        {
            auto concat_arg0 = is_forward ? ret[0] : ret[1];
            auto concat_arg1 = is_forward ? ret[1] : ret[0];
Shucai Xiao's avatar
Shucai Xiao committed
443
            prog.replace_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
        }
    }

    // replace the corresponding gru_last_output instruction
    // with the last_output, if gru_last_output exists
    // while loop to handle case of multiple gru_last_output operators
    auto last_output_it = ins->outputs().begin();
    while(last_output_it != ins->outputs().end())
    {
        last_output_it = std::find_if(last_output_it, ins->outputs().end(), [](auto i) {
            return i->name() == "gru_last_output";
        });

        if(last_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_output_it, last_output);
            last_output_it++;
        }
    }
}

std::vector<instruction_ref> rewrite_rnn::gru_cell(bool is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
466
467
468
469
470
471
                                                   program& prog,
                                                   instruction_ref ins,
                                                   std::vector<instruction_ref> inputs,
                                                   int linear_before_reset,
                                                   const operation& actv_func1,
                                                   const operation& actv_func2) const
472
473
474
475
476
477
478
479
{
    assert(inputs.size() == 5);
    auto seq  = inputs.at(0);
    auto w    = inputs.at(1);
    auto r    = inputs.at(2);
    auto bias = inputs.at(3);
    auto ih   = inputs.at(4);

Shucai Xiao's avatar
Shucai Xiao committed
480
481
    instruction_ref hidden_states = prog.end();
    instruction_ref last_output{};
Shucai Xiao's avatar
Shucai Xiao committed
482
    migraphx::shape seq_shape = seq->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
483
484
485
    migraphx::shape r_shape   = r->get_shape();
    long seq_len              = static_cast<long>(seq_shape.lens()[0]);
    long hs                   = static_cast<long>(r_shape.lens()[2]);
486

Shucai Xiao's avatar
Shucai Xiao committed
487
    migraphx::shape s(seq_shape.type(), {seq_shape.lens()[1], r_shape.lens()[2]});
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
    std::vector<int> data(s.elements(), 1);
    auto l1 = prog.add_literal(migraphx::literal{s, data});

    // weight matrix
    std::vector<int64_t> perm{1, 0};
    auto sw      = prog.insert_instruction(ins, op::squeeze{{0}}, w);
    auto wz      = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sw);
    auto tran_wz = prog.insert_instruction(ins, op::transpose{perm}, wz);

    auto wr      = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sw);
    auto tran_wr = prog.insert_instruction(ins, op::transpose{perm}, wr);

    auto wh      = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sw);
    auto tran_wh = prog.insert_instruction(ins, op::transpose{perm}, wh);

    auto sr      = prog.insert_instruction(ins, op::squeeze{{0}}, r);
    auto rz      = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sr);
    auto tran_rz = prog.insert_instruction(ins, op::transpose{perm}, rz);

    auto rr      = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sr);
    auto tran_rr = prog.insert_instruction(ins, op::transpose{perm}, rr);

    auto rh      = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sr);
    auto tran_rh = prog.insert_instruction(ins, op::transpose{perm}, rh);

    // initial states
    auto sih = prog.insert_instruction(ins, op::squeeze{{0}}, ih);

    // bias
    instruction_ref brcst_bz{};
    instruction_ref brcst_br{};
    instruction_ref brcst_wbh{};
    instruction_ref brcst_rbh{};
    instruction_ref brcst_bh{};
    if(bias != prog.end())
    {
        auto sbias = prog.insert_instruction(ins, op::squeeze{{0}}, bias);
        auto wbz   = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sbias);
        auto wbr   = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sbias);
        auto wbh   = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sbias);
        brcst_wbh  = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, wbh);

        auto rbz  = prog.insert_instruction(ins, op::slice{{0}, {3 * hs}, {4 * hs}}, sbias);
        auto rbr  = prog.insert_instruction(ins, op::slice{{0}, {4 * hs}, {5 * hs}}, sbias);
        auto rbh  = prog.insert_instruction(ins, op::slice{{0}, {5 * hs}, {6 * hs}}, sbias);
        brcst_rbh = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, rbh);

        auto bz  = prog.insert_instruction(ins, op::add{}, wbz, rbz);
        brcst_bz = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, bz);

        auto br  = prog.insert_instruction(ins, op::add{}, wbr, rbr);
        brcst_br = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, br);

        auto bh  = prog.insert_instruction(ins, op::add{}, wbh, rbh);
        brcst_bh = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, bh);
    }

    for(long i = 0; i < seq_len; i++)
    {
        long seq_index = is_forward ? i : (seq_len - 1 - i);
        auto xt = prog.insert_instruction(ins, op::slice{{0}, {seq_index}, {seq_index + 1}}, seq);
        xt      = prog.insert_instruction(ins, op::squeeze{{0}}, xt);

        // equation f(xt*(Wz^T) + Ht-1 * (Rz^T) + Wbz + Rbz)
        auto xt_wz = prog.insert_instruction(ins, op::dot{}, xt, tran_wz);
        auto ht_rz = prog.insert_instruction(ins, op::dot{}, sih, tran_rz);
        auto xht_z = prog.insert_instruction(ins, op::add{}, xt_wz, ht_rz);
        if(bias != prog.end())
        {
            xht_z = prog.insert_instruction(ins, op::add{}, xht_z, brcst_bz);
        }
        auto zt = prog.insert_instruction(ins, actv_func1, xht_z);

        // equation f(Xt*(Wr^T) + Ht-1*(Rr^T) + Wbr + Rbr)
        auto xt_wr = prog.insert_instruction(ins, op::dot{}, xt, tran_wr);
        auto ht_rr = prog.insert_instruction(ins, op::dot{}, sih, tran_rr);
        auto xht_r = prog.insert_instruction(ins, op::add{}, xt_wr, ht_rr);
        if(bias != prog.end())
        {
            xht_r = prog.insert_instruction(ins, op::add{}, xht_r, brcst_br);
        }
        auto rt = prog.insert_instruction(ins, actv_func1, xht_r);

        instruction_ref xht_h;
        if(linear_before_reset == 0)
        {
            // equation g(Xt*(Wh^T) + (rt (.) Ht-1)*(Rh^T) + Rbh + Wbh)
            auto xt_wh  = prog.insert_instruction(ins, op::dot{}, xt, tran_wh);
            auto rt_ht1 = prog.insert_instruction(ins, op::mul{}, rt, sih);
            auto rt_rh  = prog.insert_instruction(ins, op::dot{}, rt_ht1, tran_rh);
            xht_h       = prog.insert_instruction(ins, op::add{}, xt_wh, rt_rh);
            if(bias != prog.end())
            {
                xht_h = prog.insert_instruction(ins, op::add{}, xht_h, brcst_bh);
            }
        }
        else
        {
            // equation ht = g(Xt*(Wh^T) + (rt (.) (Ht-1*(Rh^T) + Rbh)) + Wbh)
            auto xt_wh  = prog.insert_instruction(ins, op::dot{}, xt, tran_wh);
            auto ht1_rh = prog.insert_instruction(ins, op::dot{}, sih, tran_rh);
            if(bias != prog.end())
            {
                ht1_rh = prog.insert_instruction(ins, op::add{}, ht1_rh, brcst_rbh);
            }
            auto rt_rh = prog.insert_instruction(ins, op::mul{}, rt, ht1_rh);
            xht_h      = prog.insert_instruction(ins, op::add{}, xt_wh, rt_rh);
            if(bias != prog.end())
            {
                xht_h = prog.insert_instruction(ins, op::add{}, xht_h, brcst_wbh);
            }
        }
        auto ht = prog.insert_instruction(ins, actv_func2, xht_h);

        // equation Ht = (1 - zt) (.) ht + zt (.) Ht-1
        auto one_minus_zt    = prog.insert_instruction(ins, op::sub{}, l1, zt);
        auto one_minus_zt_ht = prog.insert_instruction(ins, op::mul{}, one_minus_zt, ht);
        auto zt_ht1          = prog.insert_instruction(ins, op::mul{}, zt, sih);
        sih                  = prog.insert_instruction(ins, op::add{}, one_minus_zt_ht, zt_ht1);
        last_output          = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, sih);

        if(i < seq_len - 1)
        {
            if(is_forward)
            {
                hidden_states =
                    (seq_index == 0)
                        ? last_output
                        : prog.insert_instruction(ins, op::concat{0}, hidden_states, last_output);
            }
            else
            {
                hidden_states =
                    (seq_index == seq_len - 1)
                        ? last_output
                        : prog.insert_instruction(ins, op::concat{0}, last_output, hidden_states);
            }
        }
    }

    return {hidden_states, last_output};
}

std::vector<operation> rewrite_rnn::gru_actv_funcs(instruction_ref ins) const
{
    auto gru_op = any_cast<op::gru>(ins->get_operator());
    // before rewrite the gru operator, need to ensure
    // we have 4 actv funcs, even though a user does not
    // specifiy any actv func. If less than 4, use the
    // algorithm in parse_gru to make 4 actv functions
    if(gru_op.direction == op::gru::bidirectional)
    {
        if(gru_op.actv_funcs.empty())
            return {op::sigmoid{}, op::tanh{}, op::sigmoid{}, op::tanh{}};
        else if(gru_op.actv_funcs.size() == 1)
            return {gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(0)};
        else if(gru_op.actv_funcs.size() == 2)
            return {gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(1),
                    gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(1)};
        else if(gru_op.actv_funcs.size() == 3)
            return {gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(1),
                    gru_op.actv_funcs.at(2),
                    gru_op.actv_funcs.at(0)};
        else
            return gru_op.actv_funcs;
    }
    else
    {
        if(gru_op.actv_funcs.empty())
            return {op::sigmoid{}, op::tanh{}};
        else if(gru_op.actv_funcs.size() == 1)
            return {gru_op.actv_funcs.at(0), gru_op.actv_funcs.at(0)};
        else
            return gru_op.actv_funcs;
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
671
672
673
674
675
// for lstm operators
void rewrite_rnn::apply_lstm(program& prog, instruction_ref ins) const
{
    assert(ins->name() == "lstm");
    auto args = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
676

Shucai Xiao's avatar
Shucai Xiao committed
677
    shape seq_shape         = args[0]->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
678
    std::size_t hidden_size = args[1]->get_shape().lens()[2];
Shucai Xiao's avatar
Shucai Xiao committed
679
680
    std::size_t batch_size  = seq_shape.lens()[1];
    shape::type_t type      = seq_shape.type();
Shucai Xiao's avatar
Shucai Xiao committed
681
    migraphx::shape ihc_shape{type, {1, batch_size, hidden_size}};
Shucai Xiao's avatar
Shucai Xiao committed
682
    std::vector<float> ihc_data(ihc_shape.elements(), 0.0);
Shucai Xiao's avatar
Shucai Xiao committed
683
684

    migraphx::shape pph_shape{type, {1, 3 * hidden_size}};
Shucai Xiao's avatar
Shucai Xiao committed
685
    std::vector<float> pph_data(pph_shape.elements(), 0.0);
Shucai Xiao's avatar
Shucai Xiao committed
686

Shucai Xiao's avatar
Shucai Xiao committed
687
    auto actv_funcs                  = lstm_actv_funcs(ins);
Shucai Xiao's avatar
Shucai Xiao committed
688
    auto lstm_op                     = any_cast<op::lstm>(ins->get_operator());
Shucai Xiao's avatar
Shucai Xiao committed
689
690
691
692
    op::lstm::lstm_direction_t dirct = lstm_op.direction;

    instruction_ref last_output{};
    instruction_ref last_cell_output{};
Shucai Xiao's avatar
Shucai Xiao committed
693
    if(dirct == op::lstm::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
694
695
696
697
698
699
700
701
702
703
704
705
706
    {
        // input weight matrix
        // input weight matrix
        auto w_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[1]);
        auto w_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[1]);

        // hidden state weight matrix
        auto r_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[2]);
        auto r_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[2]);

        // process bias
        instruction_ref bias_forward = prog.end();
        instruction_ref bias_reverse = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
707
        if(args.size() >= 4 && args[3]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
        {
            bias_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[3]);
            bias_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[3]);
        }

        // process intial hidden state, it is the 6th argument
        instruction_ref ih_forward{};
        instruction_ref ih_reverse{};
        if(args.size() >= 6 && args[5]->name() != "undefined")
        {
            ih_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[5]);
            ih_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[5]);
        }
        else
        {
            ih_forward = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
            ih_reverse = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
        }

        // process initial cell value
        instruction_ref ic_forward{};
        instruction_ref ic_reverse{};
Shucai Xiao's avatar
Shucai Xiao committed
730
        if(args.size() >= 7 && args[6]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
731
732
733
734
735
736
737
738
739
740
741
742
743
        {
            ic_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[6]);
            ic_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[6]);
        }
        else
        {
            ic_forward = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
            ic_reverse = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
        }

        // process weight of the peephole
        instruction_ref pph_forward{};
        instruction_ref pph_reverse{};
Shucai Xiao's avatar
Shucai Xiao committed
744
        if(args.size() == 8 && args[7]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
745
746
747
748
749
750
751
752
753
        {
            pph_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[7]);
            pph_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[7]);
        }
        else
        {
            pph_forward = prog.add_literal(migraphx::literal{pph_shape, pph_data});
            pph_reverse = prog.add_literal(migraphx::literal{pph_shape, pph_data});
        }
Shucai Xiao's avatar
Shucai Xiao committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

        auto ret_forward = lstm_cell(
            true,
            prog,
            ins,
            {args[0], w_forward, r_forward, bias_forward, ih_forward, ic_forward, pph_forward},
            lstm_op.input_forget,
            actv_funcs.at(0),
            actv_funcs.at(1),
            actv_funcs.at(2));

        auto ret_reverse = lstm_cell(
            false,
            prog,
            ins,
            {args[0], w_reverse, r_reverse, bias_reverse, ih_reverse, ic_reverse, pph_reverse},
            lstm_op.input_forget,
            actv_funcs.at(3),
            actv_funcs.at(4),
            actv_funcs.at(5));

        auto concat_output =
            prog.insert_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
Shucai Xiao's avatar
Shucai Xiao committed
777
778
779
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_output);

        // last cell output
Shucai Xiao's avatar
Shucai Xiao committed
780
781
        auto concat_cell_output =
            prog.insert_instruction(ins, op::concat{1}, ret_forward[2], ret_reverse[2]);
Shucai Xiao's avatar
Shucai Xiao committed
782
        last_cell_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_cell_output);
Shucai Xiao's avatar
Shucai Xiao committed
783
784

        // the following logic is to ensure the last instruction is a concat
Shucai Xiao's avatar
Shucai Xiao committed
785
        if(ret_forward[0] == prog.end())
Shucai Xiao's avatar
Shucai Xiao committed
786
787
788
789
790
        {
            prog.replace_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
791
792
793
794
795
            ret_forward[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_forward[0], ret_forward[1]);
            ret_reverse[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_reverse[1], ret_reverse[0]);
            prog.replace_instruction(ins, op::concat{1}, {ret_forward[0], ret_reverse[0]});
Shucai Xiao's avatar
Shucai Xiao committed
796
797
798
799
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
800
801
802
803
804
805
806
        bool is_forward = (dirct == op::lstm::forward);
        // weight matrices
        auto w = args[1];
        auto r = args[2];

        // bias
        instruction_ref bias = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
807
        if(args.size() >= 4 && args[3]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
808
809
810
811
812
813
        {
            bias = args[3];
        }

        // initial hidden state
        instruction_ref ih{};
Shucai Xiao's avatar
Shucai Xiao committed
814
        if(args.size() >= 6 && args[5]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
815
816
817
818
819
820
821
822
823
824
        {
            ih = args[5];
        }
        else
        {
            ih = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
        }

        // initial cell value
        instruction_ref ic{};
Shucai Xiao's avatar
Shucai Xiao committed
825
        if(args.size() >= 7 && args[6]->name() != "undefined")
Shucai Xiao's avatar
Shucai Xiao committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
        {
            ic = args[6];
        }
        else
        {
            ic = prog.add_literal(migraphx::literal{ihc_shape, ihc_data});
        }

        // process weight of the peephole
        instruction_ref pph{};
        instruction_ref pph_reverse{};
        if(args.size() == 8 && args[7]->name() != "undefined")
        {
            pph = args[7];
        }
        else
        {
            pph = prog.add_literal(migraphx::literal{pph_shape, pph_data});
        }
Shucai Xiao's avatar
Shucai Xiao committed
845
846

        auto ret = lstm_cell(is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
847
848
849
850
851
852
853
854
                             prog,
                             ins,
                             {args[0], w, r, bias, ih, ic, pph},
                             lstm_op.input_forget,
                             actv_funcs.at(0),
                             actv_funcs.at(1),
                             actv_funcs.at(2));

Shucai Xiao's avatar
Shucai Xiao committed
855
        last_output      = prog.insert_instruction(ins, op::squeeze{{0}}, ret[1]);
Shucai Xiao's avatar
Shucai Xiao committed
856
        last_cell_output = prog.insert_instruction(ins, op::squeeze{{0}}, ret[2]);
Shucai Xiao's avatar
Shucai Xiao committed
857
        if(ret[0] == prog.end())
Shucai Xiao's avatar
Shucai Xiao committed
858
859
860
861
862
863
864
865
866
867
868
869
870
        {
            prog.replace_instruction(ins, op::concat{0}, ret[1]);
        }
        else
        {
            auto concat_arg0 = is_forward ? ret[0] : ret[1];
            auto concat_arg1 = is_forward ? ret[1] : ret[0];
            prog.replace_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
        }
    }

    // replace the corresponding lstm_last_output instruction
    // with the last_output, and the lstm_last_cell_output with
Shucai Xiao's avatar
Shucai Xiao committed
871
    // the last_cell_output. The while loop is to handle the case
Shucai Xiao's avatar
Shucai Xiao committed
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
    // of multiple lstm_last_output and lstm_last_cell_output
    // operators
    auto last_output_it = ins->outputs().begin();
    while(last_output_it != ins->outputs().end())
    {
        last_output_it = std::find_if(last_output_it, ins->outputs().end(), [](auto i) {
            return i->name() == "lstm_last_output";
        });

        if(last_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_output_it, last_output);
            last_output_it++;
        }
    }

    auto last_cell_output_it = ins->outputs().begin();
    while(last_cell_output_it != ins->outputs().end())
    {
        last_cell_output_it = std::find_if(last_cell_output_it, ins->outputs().end(), [](auto i) {
            return i->name() == "lstm_last_cell_output";
        });

        if(last_cell_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_cell_output_it, last_cell_output);
            last_cell_output_it++;
        }
Shucai Xiao's avatar
Shucai Xiao committed
900
    }
Shucai Xiao's avatar
Shucai Xiao committed
901
902
903
}

std::vector<instruction_ref> rewrite_rnn::lstm_cell(bool is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
904
905
906
                                                    program& prog,
                                                    instruction_ref ins,
                                                    std::vector<instruction_ref> inputs,
Shucai Xiao's avatar
Shucai Xiao committed
907
                                                    int input_forget,
Shucai Xiao's avatar
Shucai Xiao committed
908
909
910
                                                    const operation& actv_func1,
                                                    const operation& actv_func2,
                                                    const operation& actv_func3) const
Shucai Xiao's avatar
Shucai Xiao committed
911
{
Shucai Xiao's avatar
Shucai Xiao committed
912
913
    // must have 7 args in the input vector
    assert(inputs.size() == 7);
Shucai Xiao's avatar
Shucai Xiao committed
914
915
916
    auto seq  = inputs.at(0);
    auto w    = inputs.at(1);
    auto r    = inputs.at(2);
Shucai Xiao's avatar
Shucai Xiao committed
917
    auto bias = inputs.at(3);
Shucai Xiao's avatar
Shucai Xiao committed
918
919
920
    auto ih   = inputs.at(4);
    auto ic   = inputs.at(5);
    auto pph  = inputs.at(6);
Shucai Xiao's avatar
Shucai Xiao committed
921

Shucai Xiao's avatar
Shucai Xiao committed
922
923
924
925
926
    instruction_ref hidden_states = prog.end();
    instruction_ref last_output{};
    instruction_ref last_cell_output{};

    migraphx::shape seq_shape = seq->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
927
    migraphx::shape r_shape = r->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
928
    long seq_len              = static_cast<long>(seq_shape.lens()[0]);
Shucai Xiao's avatar
Shucai Xiao committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
    long hs                   = static_cast<long>(r_shape.lens()[2]);

    std::vector<int64_t> perm{1, 0};
    // w matrix
    auto sw = prog.insert_instruction(ins, op::squeeze{{0}}, w);
    auto wi = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sw);
    auto tran_wi = prog.insert_instruction(ins, op::transpose{perm}, wi);

    auto wo = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2*hs}}, sw);
    auto tran_wo = prog.insert_instruction(ins, op::transpose{perm}, wo);

    auto wf = prog.insert_instruction(ins, op::slice{{0}, {2*hs}, {3*hs}}, sw);
    auto tran_wf = prog.insert_instruction(ins, op::transpose{perm}, wf);

    auto wc = prog.insert_instruction(ins, op::slice{{0}, {3*hs}, {4*hs}}, sw);
    auto tran_wc = prog.insert_instruction(ins, op::transpose{perm}, wc);

    // r matrix
    auto sr = prog.insert_instruction(ins, op::squeeze{{0}}, r);
    auto ri = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sr);
    auto tran_ri = prog.insert_instruction(ins, op::transpose{perm}, ri);

    auto ro = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2*hs}}, sr);
    auto tran_ro = prog.insert_instruction(ins, op::transpose{perm}, ro);

    auto rf = prog.insert_instruction(ins, op::slice{{0}, {2*hs}, {3*hs}}, sr);
    auto tran_rf = prog.insert_instruction(ins, op::transpose{perm}, rf);

    auto rc = prog.insert_instruction(ins, op::slice{{0}, {3*hs}, {4*hs}}, sr);
    auto tran_rc = prog.insert_instruction(ins, op::transpose{perm}, rc);

    // initial hidden state
    auto sih = prog.insert_instruction(ins, op::squeeze{{0}}, ih);

    // initial cell state
    auto sic = prog.insert_instruction(ins, op::sequeeze{{0}}, ic);
    auto ic_shape = sic->get_shape();

    // peep hole
    auto spph = prog.insert_instruction(ins, op::squeeze{{0}}, pph);
    pphi = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, spph);
    pphi_bcst = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, pphi);

    ppho = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2*hs}}, spph);
    ppho_bcst = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, ppho);

    pphf = prog.insert_instruction(ins, op::slice{{0}, {2*hs}, {3*hs}}, spph);
    pphf_bcst = prog.insert_instruction(ins, op::broadcast{1, ic_shape}, pphf);

    for (long i = 0; i < seq_len; ++i)
    {
        long seq_index = is_forward ? i : (seq_len - 1 - i);
        auto xt = prog.insert_instruction(ins, op::slice{{0}, {seq_index}, {seq_index + 1}}, seq);
        xt = prog.insert_instruction(ins, op::squeeze{{0}}, xt);

        // equation it = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)
        auto xt_wi = prog.insert_instruction(ins, op::dot{}, xt, tran_wi);
        auto ht_ri = prog.insert_instruction(ins, op::dot{}, sih, tran_ri);
        auto pphi_ct = prog.insert_instruction(ins, op::mul{}, pphi_bcst, sic);
    }

Shucai Xiao's avatar
Shucai Xiao committed
990
991
992
993
994
995
996
997
998
}

std::vector<operation> rewrite_rnn::lstm_actv_funcs(instruction_ref ins) const
{
    auto lstm_op = any_cast<op::lstm>(ins->get_operator());
    // before rewrite the lstm operator, need to ensure
    // we have 6 actv funcs, even though a user does not
    // specifiy any actv func. If less than 46, use the
    // algorithm in parse_lstm to make 6 actv functions
Shucai Xiao's avatar
Shucai Xiao committed
999
    const auto& actv_funcs     = lstm_op.actv_funcs;
Shucai Xiao's avatar
Shucai Xiao committed
1000
1001
1002
1003
1004
1005
    std::size_t num_actv_funcs = actv_funcs.size();
    if(lstm_op.direction == op::lstm::bidirectional)
    {
        switch(num_actv_funcs)
        {
        case 0:
Shucai Xiao's avatar
Shucai Xiao committed
1006
            return {op::sigmoid{}, op::tanh{}, op::tanh{}, op::sigmoid{}, op::tanh{}, op::tanh{}};
Shucai Xiao's avatar
Shucai Xiao committed
1007
1008

        case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1009
1010
1011
1012
1013
1014
            return {actv_funcs.at(0),
                    actv_funcs.at(0),
                    actv_funcs.at(0),
                    actv_funcs.at(0),
                    actv_funcs.at(0),
                    actv_funcs.at(0)};
Shucai Xiao's avatar
Shucai Xiao committed
1015
1016

        case 2:
Shucai Xiao's avatar
Shucai Xiao committed
1017
1018
1019
1020
1021
1022
1023
            return {actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(1),
                    actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(1)};

Shucai Xiao's avatar
Shucai Xiao committed
1024
        case 3:
Shucai Xiao's avatar
Shucai Xiao committed
1025
1026
1027
1028
1029
1030
            return {actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(2),
                    actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1031
1032

        case 4:
Shucai Xiao's avatar
Shucai Xiao committed
1033
1034
1035
1036
1037
1038
            return {actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(2),
                    actv_funcs.at(3),
                    actv_funcs.at(3),
                    actv_funcs.at(3)};
Shucai Xiao's avatar
Shucai Xiao committed
1039
1040

        case 5:
Shucai Xiao's avatar
Shucai Xiao committed
1041
1042
1043
1044
1045
1046
            return {actv_funcs.at(0),
                    actv_funcs.at(1),
                    actv_funcs.at(2),
                    actv_funcs.at(3),
                    actv_funcs.at(4),
                    actv_funcs.at(4)};
Shucai Xiao's avatar
Shucai Xiao committed
1047

Shucai Xiao's avatar
Shucai Xiao committed
1048
        default: return actv_funcs;
Shucai Xiao's avatar
Shucai Xiao committed
1049
1050
1051
1052
1053
1054
        }
    }
    else
    {
        switch(num_actv_funcs)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1055
        case 0: return {op::sigmoid{}, op::tanh{}, op::tanh{}};
Shucai Xiao's avatar
Shucai Xiao committed
1056

Shucai Xiao's avatar
Shucai Xiao committed
1057
        case 1: return {actv_funcs.at(0), actv_funcs.at(0), actv_funcs.at(0)};
Shucai Xiao's avatar
Shucai Xiao committed
1058

Shucai Xiao's avatar
Shucai Xiao committed
1059
1060
1061
        case 2: return {actv_funcs.at(0), actv_funcs.at(1), actv_funcs.at(1)};

        default: return actv_funcs;
Shucai Xiao's avatar
Shucai Xiao committed
1062
1063
1064
1065
        }
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
1066
1067
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx