rewrite_rnn.cpp 11 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
2
3
4
5
6
7
8
9
10
11
12
#include <migraphx/rewrite_rnn.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

void rewrite_rnn::apply(program& prog) const
{
Shucai Xiao's avatar
Shucai Xiao committed
13
    instruction_ref last_output = prog.end();
Shucai Xiao's avatar
Shucai Xiao committed
14
15
    for(auto ins : iterator_for(prog))
    {
Shucai Xiao's avatar
Shucai Xiao committed
16
17
        // rewrite rnn operator
        if(ins->name() == "rnn")
Shucai Xiao's avatar
Shucai Xiao committed
18
        {
Shucai Xiao's avatar
Shucai Xiao committed
19
20
21
            // could be 3 to 6 inputs, but the 5th input is undefined in
            // pytorch exported onnx, and it is ignored by protobuf. So
            // for input arguments 5 and 6, we need to check the shape,
Shucai Xiao's avatar
Shucai Xiao committed
22
23
24
25
26
27
28
29
30
31
32
33
34
            // then based on the shape to judge the specific input info
            auto args = ins->inputs();

            shape seq_shape         = args[0]->get_shape();
            std::size_t hidden_size = args[1]->get_shape().lens()[1];
            std::size_t batch_size  = seq_shape.lens()[1];
            shape::type_t type      = seq_shape.type();
            migraphx::shape ih_shape{type, {batch_size, hidden_size}};
            std::vector<char> data(ih_shape.bytes(), 0);

            auto rnn_op                    = any_cast<op::rnn>(ins->get_operator());
            op::rnn::rnn_direction_t dicrt = rnn_op.direction;
            if(dicrt == op::rnn::rnn_direction_t::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
35
            {
Shucai Xiao's avatar
Shucai Xiao committed
36
                // input weight matrix
Shucai Xiao's avatar
Shucai Xiao committed
37
38
                auto w_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[1]);
                auto w_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
39
40

                // hidden state weight matrix
Shucai Xiao's avatar
Shucai Xiao committed
41
42
                auto r_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[2]);
                auto r_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[2]);
Shucai Xiao's avatar
Shucai Xiao committed
43
44
45
46
47
48
49
50
51
52
53
54
55

                // process bias
                instruction_ref bias_forward, bias_reverse;
                bias_forward = bias_reverse = prog.end();
                if(args.size() >= 4)
                {
                    bias_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[3]);
                    bias_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[3]);
                }

                // process intial hidden state, it could be the 6th argument
                // or the 5th one (if the sequence len argument is ignored)
                instruction_ref ih_forward, ih_reverse;
Shucai Xiao's avatar
Shucai Xiao committed
56
57
                if(args.size() == 6 ||
                   (args.size() == 5 && args[4]->get_shape().lens().size() == 3))
Shucai Xiao's avatar
Shucai Xiao committed
58
59
                {
                    auto arg_ih = (args.size() == 6) ? args[5] : args[4];
Shucai Xiao's avatar
Shucai Xiao committed
60
61
                    ih_forward  = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, arg_ih);
                    ih_reverse  = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, arg_ih);
Shucai Xiao's avatar
Shucai Xiao committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
                }
                else
                {
                    ih_forward = prog.add_literal(migraphx::literal{ih_shape, data});
                    ih_reverse = prog.add_literal(migraphx::literal{ih_shape, data});
                }

                auto ret_forward = rnn_cell(true,
                                            prog,
                                            ins,
                                            args[0],
                                            w_forward,
                                            r_forward,
                                            bias_forward,
                                            ih_forward,
                                            rnn_op.actv_funcs.at(0));
                auto ret_reverse = rnn_cell(false,
                                            prog,
                                            ins,
                                            args[0],
                                            w_reverse,
                                            r_reverse,
                                            bias_reverse,
                                            ih_reverse,
                                            rnn_op.actv_funcs.at(1));

Shucai Xiao's avatar
Shucai Xiao committed
88
89
                auto concat_output = prog.insert_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
                last_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_output);
Shucai Xiao's avatar
Shucai Xiao committed
90

Shucai Xiao's avatar
Shucai Xiao committed
91
92
93
94
95
96
97
98
99
100
101
102
103
                // The following logic is to ensure the last instruction rewritten from
                // rnn operator is a concat instruction
                // sequence len is 1
                if (ret_forward[0] == prog.end())
                {
                    prog.replace_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
                }
                else 
                {
                    ret_forward[0] = prog.insert_instruction(ins, op::concat{0}, ret_forward[0], ret_forward[1]);
                    ret_reverse[0] = prog.insert_instruction(ins, op::concat{0}, ret_reverse[1], ret_reverse[0]);
                    prog.replace_instruction(ins, op::concat{1}, {ret_forward[0], ret_reverse[0]});
                }
Shucai Xiao's avatar
Shucai Xiao committed
104
105
106
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
107
                bool is_forward = (dicrt == op::rnn::rnn_direction_t::forward);
Shucai Xiao's avatar
Shucai Xiao committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
                // input weight matrix
                auto w = args[1];

                // hidden state weight matrix
                auto r = args[2];

                // process bias and initial hidden state
                instruction_ref bias = prog.end();
                if(args.size() >= 4)
                {
                    bias = args[3];
                }

                // process intial hidden state
                instruction_ref ih;
Shucai Xiao's avatar
Shucai Xiao committed
123
124
                if(args.size() == 6 ||
                   (args.size() == 5 && args[4]->get_shape().lens().size() == 3))
Shucai Xiao's avatar
Shucai Xiao committed
125
126
127
128
129
130
131
132
                {
                    ih = (args.size() == 6) ? args[5] : args[4];
                }
                else
                {
                    ih = prog.add_literal(migraphx::literal{ih_shape, data});
                }

Shucai Xiao's avatar
Shucai Xiao committed
133
134
                auto ret = rnn_cell(
                    is_forward, prog, ins, args[0], w, r, bias, ih, rnn_op.actv_funcs.at(0));
Shucai Xiao's avatar
Shucai Xiao committed
135
                last_output = prog.insert_instruction(ins, op::squeeze{{0}}, ret[1]);
Shucai Xiao's avatar
Shucai Xiao committed
136

Shucai Xiao's avatar
Shucai Xiao committed
137
138
139
140
141
142
143
144
145
146
147
148
149
                // following logic is to ensure the last instruction is a 
                // concat instruction
                // sequence len is 1
                if (ret[0] == prog.end())
                {
                    prog.replace_instruction(ins, op::concat{0}, ret[1]);
                }
                else
                {
                    auto concat_arg0 = is_forward ? ret[0] : ret[1];
                    auto concat_arg1 = is_forward ? ret[1] : ret[0];
                    prog.replace_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
                }
Shucai Xiao's avatar
Shucai Xiao committed
150
151
152
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
153
        // rewrite the rnn_last_output operator that right after the rnn
Shucai Xiao's avatar
Shucai Xiao committed
154
155
156
        // operator. Intuitively, we can do a slice on the input to get
        // the last output, but it is already existed in the rnn operator,
        // so we can just use it as the output here
Shucai Xiao's avatar
Shucai Xiao committed
157
        if(ins->name() == "rnn_last_output")
Shucai Xiao's avatar
Shucai Xiao committed
158
159
        {
            // if rnn operator is executed, the last_output != prog.end()
Shucai Xiao's avatar
Shucai Xiao committed
160
            if(last_output != prog.end())
Shucai Xiao's avatar
Shucai Xiao committed
161
            {
Shucai Xiao's avatar
Shucai Xiao committed
162
                prog.replace_instruction(ins, last_output);
Shucai Xiao's avatar
Shucai Xiao committed
163
164
                last_output = prog.end();
            }
Shucai Xiao's avatar
Shucai Xiao committed
165
166
167
168
            else
            {
                MIGRAPHX_THROW("RNN_LAST_OUTPUT: must put after rnn operator");
            }
Shucai Xiao's avatar
Shucai Xiao committed
169
        }
Shucai Xiao's avatar
Shucai Xiao committed
170
171
172
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
173
std::vector<instruction_ref> rewrite_rnn::rnn_cell(bool is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
174
175
176
                                                   program& prog,
                                                   instruction_ref ins,
                                                   instruction_ref input,
Shucai Xiao's avatar
Shucai Xiao committed
177
178
                                                   instruction_ref w,
                                                   instruction_ref r,
Shucai Xiao's avatar
Shucai Xiao committed
179
                                                   instruction_ref bias,
Shucai Xiao's avatar
Shucai Xiao committed
180
                                                   instruction_ref ih,
Shucai Xiao's avatar
Shucai Xiao committed
181
                                                   operation& actv_func) const
Shucai Xiao's avatar
Shucai Xiao committed
182
{
Shucai Xiao's avatar
Shucai Xiao committed
183
184
    // squeeze and transpose w
    std::vector<int64_t> perm{1, 0};
Shucai Xiao's avatar
Shucai Xiao committed
185
    auto sw      = prog.insert_instruction(ins, op::squeeze{{0}}, w);
Shucai Xiao's avatar
Shucai Xiao committed
186
    auto tran_sw = prog.insert_instruction(ins, op::transpose{perm}, sw);
Shucai Xiao's avatar
Shucai Xiao committed
187
188

    // squeeze and transpose r
Shucai Xiao's avatar
Shucai Xiao committed
189
    auto sr      = prog.insert_instruction(ins, op::squeeze{{0}}, r);
Shucai Xiao's avatar
Shucai Xiao committed
190
191
192
193
194
195
    auto tran_sr = prog.insert_instruction(ins, op::transpose{perm}, sr);

    // initial hidden state
    auto sih = prog.insert_instruction(ins, op::squeeze{{0}}, ih);

    // bias
Shucai Xiao's avatar
Shucai Xiao committed
196
    if(bias != prog.end())
Shucai Xiao's avatar
Shucai Xiao committed
197
    {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
        long hs    = r->get_shape().lens()[2];
        auto sbias = prog.insert_instruction(ins, op::squeeze{{0}}, bias);
        auto wb    = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sbias);
        auto rb    = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sbias);
        auto b     = prog.insert_instruction(ins, op::add{}, wb, rb);
        bias       = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, b);
Shucai Xiao's avatar
Shucai Xiao committed
204
205
    }

Shucai Xiao's avatar
Shucai Xiao committed
206
    instruction_ref hidden_out = prog.end(), last_out;
Shucai Xiao's avatar
Shucai Xiao committed
207
    std::size_t seq_len = input->get_shape().lens()[0];
Shucai Xiao's avatar
Shucai Xiao committed
208
209
    for(std::size_t i = 0; i < seq_len; i++)
    {
Shucai Xiao's avatar
Shucai Xiao committed
210
        long seq_index = is_forward ? i : (seq_len - 1 - i);
Shucai Xiao's avatar
Shucai Xiao committed
211
212
        auto xt = prog.insert_instruction(ins, op::slice{{0}, {seq_index}, {seq_index + 1}}, input);
        xt      = prog.insert_instruction(ins, op::squeeze{{0}}, xt);
Shucai Xiao's avatar
Shucai Xiao committed
213
214
215
216
        auto xt_wi = prog.insert_instruction(ins, op::dot{}, xt, tran_sw);
        auto ht_ri = prog.insert_instruction(ins, op::dot{}, sih, tran_sr);
        auto xt_ht = prog.insert_instruction(ins, op::add{}, xt_wi, ht_ri);
        instruction_ref ht;
Shucai Xiao's avatar
Shucai Xiao committed
217
218
        if(bias != prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
219
            ht = prog.insert_instruction(ins, op::add{}, xt_ht, bias);
Shucai Xiao's avatar
Shucai Xiao committed
220
221
222
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
223
            ht = xt_ht;
Shucai Xiao's avatar
Shucai Xiao committed
224
225
226
        }

        // apply activation function
Shucai Xiao's avatar
Shucai Xiao committed
227
        ht  = prog.insert_instruction(ins, actv_func, ht);
Shucai Xiao's avatar
Shucai Xiao committed
228
        sih = ht;
Shucai Xiao's avatar
Shucai Xiao committed
229

Shucai Xiao's avatar
Shucai Xiao committed
230
231
232
        // add the dimensions of sequence length (axis 0 for sequence length,
        // axis 1 for num_directions
        last_out = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, ht);
Shucai Xiao's avatar
Shucai Xiao committed
233

Shucai Xiao's avatar
Shucai Xiao committed
234
235
236
237
        // concatenation for the last last_out is performed in the apply()
        // function to ensure the last instruction is concat, then we have
        // output inserted
        if (i < seq_len - 1)
Shucai Xiao's avatar
Shucai Xiao committed
238
        {
Shucai Xiao's avatar
Shucai Xiao committed
239
240
241
242
243
244
245
246
247
248
249
250
            if(is_forward)
            {
                hidden_out = (seq_index == 0)
                                ? last_out
                                : prog.insert_instruction(ins, op::concat{0}, hidden_out, last_out);
            }
            else
            {
                hidden_out = (seq_index == seq_len - 1)
                                ? last_out
                                : prog.insert_instruction(ins, op::concat{0}, last_out, hidden_out);
            }
Shucai Xiao's avatar
Shucai Xiao committed
251
252
253
254
255
        }
    }

    std::vector<instruction_ref> out_args;
    out_args.push_back(hidden_out);
Shucai Xiao's avatar
Shucai Xiao committed
256
    out_args.push_back(last_out);
Shucai Xiao's avatar
Shucai Xiao committed
257
258
259
260
261
262

    return out_args;
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx