rewrite_rnn.cpp 26.5 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
2
3
4
5
6
7
8
9
10
#include <migraphx/rewrite_rnn.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

Shucai Xiao's avatar
Shucai Xiao committed
11
void rewrite_rnn::apply(program& prog) const
Shucai Xiao's avatar
Shucai Xiao committed
12
13
14
{
    for(auto ins : iterator_for(prog))
    {
Shucai Xiao's avatar
Shucai Xiao committed
15
        if(ins->name() == "rnn")
Shucai Xiao's avatar
Shucai Xiao committed
16
        {
Shucai Xiao's avatar
Shucai Xiao committed
17
            apply_vanilla_rnn(prog, ins);
18
        }
Shucai Xiao's avatar
Shucai Xiao committed
19

20
21
22
        if(ins->name() == "gru")
        {
            apply_gru(prog, ins);
Shucai Xiao's avatar
Shucai Xiao committed
23
        }
Shucai Xiao's avatar
Shucai Xiao committed
24
    }
25
26
}

Shucai Xiao's avatar
Shucai Xiao committed
27
void rewrite_rnn::apply_vanilla_rnn(program& prog, instruction_ref ins) const
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
{
    assert(ins->name() == "rnn");
    // could be 3 to 6 inputs, but the parse_rnn function will
    // append undefined operators to make 6 arguments when parsing
    // an onnx file. Another case is user can have only 3 arguments
    // when writing their program.
    auto args = ins->inputs();

    shape seq_shape         = args[0]->get_shape();
    std::size_t hidden_size = args[1]->get_shape().lens()[1];
    std::size_t batch_size  = seq_shape.lens()[1];
    shape::type_t type      = seq_shape.type();
    migraphx::shape ih_shape{type, {1, batch_size, hidden_size}};
    std::vector<float> data(ih_shape.elements(), 0);

Shucai Xiao's avatar
Shucai Xiao committed
43
    auto actv_funcs                = vanilla_rnn_actv_funcs(ins);
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    auto rnn_op                    = any_cast<op::rnn>(ins->get_operator());
    op::rnn::rnn_direction_t dicrt = rnn_op.direction;
    instruction_ref last_output{};
    if(dicrt == op::rnn::bidirectional)
    {
        // input weight matrix
        auto w_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[1]);
        auto w_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[1]);

        // hidden state weight matrix
        auto r_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[2]);
        auto r_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[2]);

        // process bias
        instruction_ref bias_forward = prog.end();
        instruction_ref bias_reverse = prog.end();
        if(args.size() >= 4 && args[3]->get_operator().name() != "undefined")
        {
            bias_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[3]);
            bias_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[3]);
        }

        // process intial hidden state, it could be the 6th argument
        // or the 5th one (if the sequence len argument is ignored)
        instruction_ref ih_forward{};
        instruction_ref ih_reverse{};
        if(args.size() == 6 && args[5]->get_operator().name() != "undefined")
        {
            ih_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[5]);
            ih_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[5]);
        }
        else
        {
            ih_forward = prog.add_literal(migraphx::literal{ih_shape, data});
            ih_reverse = prog.add_literal(migraphx::literal{ih_shape, data});
        }

Shucai Xiao's avatar
Shucai Xiao committed
81
        auto ret_forward = vanilla_rnn_cell(true,
Shucai Xiao's avatar
Shucai Xiao committed
82
83
84
85
86
87
88
89
                                            prog,
                                            ins,
                                            args[0],
                                            w_forward,
                                            r_forward,
                                            bias_forward,
                                            ih_forward,
                                            actv_funcs.at(0));
Shucai Xiao's avatar
Shucai Xiao committed
90
        auto ret_reverse = vanilla_rnn_cell(false,
Shucai Xiao's avatar
Shucai Xiao committed
91
92
93
94
95
96
97
98
                                            prog,
                                            ins,
                                            args[0],
                                            w_reverse,
                                            r_reverse,
                                            bias_reverse,
                                            ih_reverse,
                                            actv_funcs.at(1));
99
100
101
102
103
104
105
106
107
108
109

        auto concat_output =
            prog.insert_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_output);

        // The following logic is to ensure the last instruction rewritten from
        // rnn operator is a concat instruction
        // sequence len is 1
        instruction_ref hidden_output{};
        if(ret_forward[0] == prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
110
111
            hidden_output =
                prog.replace_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
112
113
114
115
116
117
118
        }
        else
        {
            ret_forward[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_forward[0], ret_forward[1]);
            ret_reverse[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_reverse[1], ret_reverse[0]);
Shucai Xiao's avatar
Shucai Xiao committed
119
120
            hidden_output =
                prog.replace_instruction(ins, op::concat{1}, {ret_forward[0], ret_reverse[0]});
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        }
    }
    else
    {
        bool is_forward = (dicrt == op::rnn::forward);
        // input weight matrix
        auto w = args[1];

        // hidden state weight matrix
        auto r = args[2];

        // process bias and initial hidden state
        instruction_ref bias = prog.end();
        if(args.size() >= 4 && args[3]->get_operator().name() != "undefined")
        {
            bias = args[3];
        }

        // process intial hidden state
        instruction_ref ih;
        if(args.size() == 6 && args[5]->get_operator().name() != "undefined")
        {
            ih = args[5];
        }
        else
        {
            ih = prog.add_literal(migraphx::literal{ih_shape, data});
        }

Shucai Xiao's avatar
Shucai Xiao committed
150
151
        auto ret =
            vanilla_rnn_cell(is_forward, prog, ins, args[0], w, r, bias, ih, actv_funcs.at(0));
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, ret[1]);

        // following logic is to ensure the last instruction is a
        // concat instruction
        // sequence len is 1
        instruction_ref hidden_output{};
        if(ret[0] == prog.end())
        {
            hidden_output = prog.replace_instruction(ins, op::concat{0}, ret[1]);
        }
        else
        {
            auto concat_arg0 = is_forward ? ret[0] : ret[1];
            auto concat_arg1 = is_forward ? ret[1] : ret[0];
Shucai Xiao's avatar
Shucai Xiao committed
166
            hidden_output = prog.replace_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        }
    }

    // search its output to find if there are rnn_last_output operator
    // while loop to handle case of multiple rnn_last_output operators
    auto last_output_it = ins->outputs().begin();
    while(last_output_it != ins->outputs().end())
    {
        last_output_it = std::find_if(last_output_it, ins->outputs().end(), [](auto i) {
            return i->name() == "rnn_last_output";
        });

        if(last_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_output_it, last_output);
            last_output_it++;
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
185
186
}

Shucai Xiao's avatar
Shucai Xiao committed
187
std::vector<instruction_ref> rewrite_rnn::vanilla_rnn_cell(bool is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
192
193
194
195
                                                           program& prog,
                                                           instruction_ref ins,
                                                           instruction_ref input,
                                                           instruction_ref w,
                                                           instruction_ref r,
                                                           instruction_ref bias,
                                                           instruction_ref ih,
                                                           operation& actv_func) const
Shucai Xiao's avatar
Shucai Xiao committed
196
{
Shucai Xiao's avatar
Shucai Xiao committed
197
198
    // squeeze and transpose w
    std::vector<int64_t> perm{1, 0};
Shucai Xiao's avatar
Shucai Xiao committed
199
    auto sw      = prog.insert_instruction(ins, op::squeeze{{0}}, w);
Shucai Xiao's avatar
Shucai Xiao committed
200
    auto tran_sw = prog.insert_instruction(ins, op::transpose{perm}, sw);
Shucai Xiao's avatar
Shucai Xiao committed
201
202

    // squeeze and transpose r
Shucai Xiao's avatar
Shucai Xiao committed
203
    auto sr      = prog.insert_instruction(ins, op::squeeze{{0}}, r);
Shucai Xiao's avatar
Shucai Xiao committed
204
205
206
207
208
209
    auto tran_sr = prog.insert_instruction(ins, op::transpose{perm}, sr);

    // initial hidden state
    auto sih = prog.insert_instruction(ins, op::squeeze{{0}}, ih);

    // bias
Shucai Xiao's avatar
Shucai Xiao committed
210
    if(bias != prog.end())
Shucai Xiao's avatar
Shucai Xiao committed
211
    {
Shucai Xiao's avatar
Shucai Xiao committed
212
213
214
215
216
217
        long hs    = r->get_shape().lens()[2];
        auto sbias = prog.insert_instruction(ins, op::squeeze{{0}}, bias);
        auto wb    = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sbias);
        auto rb    = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sbias);
        auto b     = prog.insert_instruction(ins, op::add{}, wb, rb);
        bias       = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, b);
Shucai Xiao's avatar
Shucai Xiao committed
218
219
    }

Shucai Xiao's avatar
Shucai Xiao committed
220
221
    instruction_ref hidden_out = prog.end();
    instruction_ref last_out{};
Shucai Xiao's avatar
Shucai Xiao committed
222
223
    last_out            = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, sih);
    std::size_t seq_len = input->get_shape().lens()[0];
Shucai Xiao's avatar
Shucai Xiao committed
224
225
    for(std::size_t i = 0; i < seq_len; i++)
    {
Shucai Xiao's avatar
Shucai Xiao committed
226
        long seq_index = is_forward ? i : (seq_len - 1 - i);
Shucai Xiao's avatar
Shucai Xiao committed
227
228
        auto xt = prog.insert_instruction(ins, op::slice{{0}, {seq_index}, {seq_index + 1}}, input);
        xt      = prog.insert_instruction(ins, op::squeeze{{0}}, xt);
Shucai Xiao's avatar
Shucai Xiao committed
229
230
231
232
        auto xt_wi = prog.insert_instruction(ins, op::dot{}, xt, tran_sw);
        auto ht_ri = prog.insert_instruction(ins, op::dot{}, sih, tran_sr);
        auto xt_ht = prog.insert_instruction(ins, op::add{}, xt_wi, ht_ri);
        instruction_ref ht;
Shucai Xiao's avatar
Shucai Xiao committed
233
234
        if(bias != prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
235
            ht = prog.insert_instruction(ins, op::add{}, xt_ht, bias);
Shucai Xiao's avatar
Shucai Xiao committed
236
237
238
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
239
            ht = xt_ht;
Shucai Xiao's avatar
Shucai Xiao committed
240
241
242
        }

        // apply activation function
Shucai Xiao's avatar
Shucai Xiao committed
243
        ht  = prog.insert_instruction(ins, actv_func, ht);
Shucai Xiao's avatar
Shucai Xiao committed
244
        sih = ht;
Shucai Xiao's avatar
Shucai Xiao committed
245

Shucai Xiao's avatar
Shucai Xiao committed
246
247
248
        // add the dimensions of sequence length (axis 0 for sequence length,
        // axis 1 for num_directions
        last_out = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, ht);
Shucai Xiao's avatar
Shucai Xiao committed
249

Shucai Xiao's avatar
Shucai Xiao committed
250
251
252
        // concatenation for the last last_out is performed in the apply()
        // function to ensure the last instruction is concat, then we have
        // output inserted
Shucai Xiao's avatar
Shucai Xiao committed
253
        if(i < seq_len - 1)
Shucai Xiao's avatar
Shucai Xiao committed
254
        {
Shucai Xiao's avatar
Shucai Xiao committed
255
256
            if(is_forward)
            {
Shucai Xiao's avatar
Shucai Xiao committed
257
258
259
260
                hidden_out =
                    (seq_index == 0)
                        ? last_out
                        : prog.insert_instruction(ins, op::concat{0}, hidden_out, last_out);
Shucai Xiao's avatar
Shucai Xiao committed
261
262
263
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
264
265
266
267
                hidden_out =
                    (seq_index == seq_len - 1)
                        ? last_out
                        : prog.insert_instruction(ins, op::concat{0}, last_out, hidden_out);
Shucai Xiao's avatar
Shucai Xiao committed
268
            }
Shucai Xiao's avatar
Shucai Xiao committed
269
270
271
        }
    }

272
    return {hidden_out, last_out};
Shucai Xiao's avatar
Shucai Xiao committed
273
274
}

Shucai Xiao's avatar
Shucai Xiao committed
275
std::vector<operation> rewrite_rnn::vanilla_rnn_actv_funcs(instruction_ref ins) const
276
277
278
{
    auto rnn_op = any_cast<op::rnn>(ins->get_operator());
    // before rewrite the rnn operator, need to ensure
Shucai Xiao's avatar
Shucai Xiao committed
279
    // we have 2 actv funcs. If less than 2, use the
280
    // algorithm in parse_rnn to make 2 actv functions
Shucai Xiao's avatar
Shucai Xiao committed
281
    if(rnn_op.direction == op::rnn::bidirectional)
282
    {
Shucai Xiao's avatar
Shucai Xiao committed
283
        if(rnn_op.actv_funcs.empty())
284
285
286
287
        {
            // default is tanh
            return {op::tanh{}, op::tanh{}};
        }
Shucai Xiao's avatar
Shucai Xiao committed
288
        else if(rnn_op.actv_funcs.size() == 1)
289
290
291
292
293
294
295
296
297
298
        {
            return {rnn_op.actv_funcs.at(0), rnn_op.actv_funcs.at(0)};
        }
        else
        {
            return rnn_op.actv_funcs;
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
299
        if(rnn_op.actv_funcs.empty())
300
301
302
303
304
305
306
307
308
309
310
        {
            // default is tanh
            return {op::tanh{}};
        }
        else
        {
            return rnn_op.actv_funcs;
        }
    }
}

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
void rewrite_rnn::apply_gru(program& prog, instruction_ref ins) const
{
    assert(ins->name() == "gru");
    const auto actv_funcs = gru_actv_funcs(ins);
    // could be 3 to 5 inputs (though onnx::rnn has 6 inputs,
    // the 5th one is undefined and ignored by protobuf. so
    // we need to process up to 5 inputs
    auto args = ins->inputs();

    shape seq_shape         = args[0]->get_shape();
    std::size_t hidden_size = args[2]->get_shape().lens()[2];
    std::size_t batch_size  = seq_shape.lens()[1];
    shape::type_t type      = seq_shape.type();
    migraphx::shape ih_shape{type, {1, batch_size, hidden_size}};
    std::vector<float> data(ih_shape.elements(), 0.0);

    auto gru_op                    = any_cast<op::gru>(ins->get_operator());
    op::gru::gru_direction_t dicrt = gru_op.direction;
    instruction_ref last_output{};
    if(dicrt == op::gru::bidirectional)
    {
        // w weight matrix
        auto w_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[1]);
        auto w_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[1]);

        // r weight matrix
        auto r_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[2]);
        auto r_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[2]);

        // bias
        instruction_ref bias_forward = prog.end();
        instruction_ref bias_reverse = prog.end();
        if(args.size() >= 4 && args[3]->get_operator().name() != "undefined")
        {
            bias_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[3]);
            bias_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[3]);
        }

        // intial hidden state
        instruction_ref ih_forward{};
        instruction_ref ih_reverse{};
        if(args.size() == 6 && args[5]->get_operator().name() != "undefined")
        {
            ih_forward = prog.insert_instruction(ins, op::slice{{0}, {0}, {1}}, args[5]);
            ih_reverse = prog.insert_instruction(ins, op::slice{{0}, {1}, {2}}, args[5]);
        }
        else
        {
            ih_forward = prog.add_literal(migraphx::literal{ih_shape, data});
            ih_reverse = prog.add_literal(migraphx::literal{ih_shape, data});
        }

Shucai Xiao's avatar
Shucai Xiao committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        auto ret_forward = gru_cell(true,
                                    prog,
                                    ins,
                                    {args[0], w_forward, r_forward, bias_forward, ih_forward},
                                    gru_op.linear_before_reset,
                                    actv_funcs.at(0),
                                    actv_funcs.at(1));

        auto ret_reverse = gru_cell(false,
                                    prog,
                                    ins,
                                    {args[0], w_reverse, r_reverse, bias_reverse, ih_reverse},
                                    gru_op.linear_before_reset,
                                    actv_funcs.at(2),
                                    actv_funcs.at(3));
378
379
380
381
382
383
384
385
386
387

        auto concat_output =
            prog.insert_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, concat_output);

        // The following logic is to ensure the last instruction rewritten
        // from gru operator is a concat
        instruction_ref hidden_state{};
        if(ret_forward[0] == prog.end())
        {
Shucai Xiao's avatar
Shucai Xiao committed
388
389
            hidden_state =
                prog.replace_instruction(ins, op::concat{1}, ret_forward[1], ret_reverse[1]);
390
391
392
393
394
395
396
        }
        else
        {
            ret_forward[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_forward[0], ret_forward[1]);
            ret_reverse[0] =
                prog.insert_instruction(ins, op::concat{0}, ret_reverse[1], ret_reverse[0]);
Shucai Xiao's avatar
Shucai Xiao committed
397
398
            hidden_state =
                prog.replace_instruction(ins, op::concat{1}, {ret_forward[0], ret_reverse[0]});
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        }
    }
    else
    {
        bool is_forward = (dicrt == op::gru::forward);
        // weight matrix
        auto w = args[1];
        auto r = args[2];

        // bias
        instruction_ref bias = prog.end();
        if(args.size() >= 4 && args[3]->get_operator().name() != "undefined")
        {
            bias = args[3];
        }

        // intial hidden state
        instruction_ref ih{};
        if(args.size() == 6 && args[5]->get_operator().name() != "undefined")
        {
            ih = args[5];
        }
        else
        {
            ih = prog.add_literal(migraphx::literal{ih_shape, data});
        }

        auto ret = gru_cell(is_forward,
                            prog,
                            ins,
                            {args[0], w, r, bias, ih},
                            gru_op.linear_before_reset,
                            actv_funcs.at(0),
                            actv_funcs.at(1));

        last_output = prog.insert_instruction(ins, op::squeeze{{0}}, ret[1]);

        instruction_ref hidden_state{};
        if(ret[0] == prog.end())
        {
            hidden_state = prog.replace_instruction(ins, op::concat{0}, ret[1]);
        }
        else
        {
            auto concat_arg0 = is_forward ? ret[0] : ret[1];
            auto concat_arg1 = is_forward ? ret[1] : ret[0];
Shucai Xiao's avatar
Shucai Xiao committed
445
            hidden_state = prog.replace_instruction(ins, op::concat{0}, concat_arg0, concat_arg1);
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        }
    }

    // replace the corresponding gru_last_output instruction
    // with the last_output, if gru_last_output exists
    // while loop to handle case of multiple gru_last_output operators
    auto last_output_it = ins->outputs().begin();
    while(last_output_it != ins->outputs().end())
    {
        last_output_it = std::find_if(last_output_it, ins->outputs().end(), [](auto i) {
            return i->name() == "gru_last_output";
        });

        if(last_output_it != ins->outputs().end())
        {
            prog.replace_instruction(*last_output_it, last_output);
            last_output_it++;
        }
    }
}

std::vector<instruction_ref> rewrite_rnn::gru_cell(bool is_forward,
Shucai Xiao's avatar
Shucai Xiao committed
468
469
470
471
472
473
                                                   program& prog,
                                                   instruction_ref ins,
                                                   std::vector<instruction_ref> inputs,
                                                   int linear_before_reset,
                                                   const operation& actv_func1,
                                                   const operation& actv_func2) const
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
{
    assert(inputs.size() == 5);
    auto seq  = inputs.at(0);
    auto w    = inputs.at(1);
    auto r    = inputs.at(2);
    auto bias = inputs.at(3);
    auto ih   = inputs.at(4);

    instruction_ref hidden_states = prog.end(), last_output;
    long seq_len                  = static_cast<long>(seq->get_shape().lens()[0]);
    long hs                       = static_cast<long>(r->get_shape().lens()[2]);

    migraphx::shape s(seq->get_shape().type(),
                      {seq->get_shape().lens()[1], static_cast<std::size_t>(hs)});
    std::vector<int> data(s.elements(), 1);
    auto l1 = prog.add_literal(migraphx::literal{s, data});

    // weight matrix
    std::vector<int64_t> perm{1, 0};
    auto sw      = prog.insert_instruction(ins, op::squeeze{{0}}, w);
    auto wz      = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sw);
    auto tran_wz = prog.insert_instruction(ins, op::transpose{perm}, wz);

    auto wr      = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sw);
    auto tran_wr = prog.insert_instruction(ins, op::transpose{perm}, wr);

    auto wh      = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sw);
    auto tran_wh = prog.insert_instruction(ins, op::transpose{perm}, wh);

    auto sr      = prog.insert_instruction(ins, op::squeeze{{0}}, r);
    auto rz      = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sr);
    auto tran_rz = prog.insert_instruction(ins, op::transpose{perm}, rz);

    auto rr      = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sr);
    auto tran_rr = prog.insert_instruction(ins, op::transpose{perm}, rr);

    auto rh      = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sr);
    auto tran_rh = prog.insert_instruction(ins, op::transpose{perm}, rh);

    // initial states
    auto sih = prog.insert_instruction(ins, op::squeeze{{0}}, ih);

    // bias
    instruction_ref brcst_bz{};
    instruction_ref brcst_br{};
    instruction_ref brcst_wbh{};
    instruction_ref brcst_rbh{};
    instruction_ref brcst_bh{};
    if(bias != prog.end())
    {
        auto sbias = prog.insert_instruction(ins, op::squeeze{{0}}, bias);
        auto wbz   = prog.insert_instruction(ins, op::slice{{0}, {0}, {hs}}, sbias);
        auto wbr   = prog.insert_instruction(ins, op::slice{{0}, {hs}, {2 * hs}}, sbias);
        auto wbh   = prog.insert_instruction(ins, op::slice{{0}, {2 * hs}, {3 * hs}}, sbias);
        brcst_wbh  = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, wbh);

        auto rbz  = prog.insert_instruction(ins, op::slice{{0}, {3 * hs}, {4 * hs}}, sbias);
        auto rbr  = prog.insert_instruction(ins, op::slice{{0}, {4 * hs}, {5 * hs}}, sbias);
        auto rbh  = prog.insert_instruction(ins, op::slice{{0}, {5 * hs}, {6 * hs}}, sbias);
        brcst_rbh = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, rbh);

        auto bz  = prog.insert_instruction(ins, op::add{}, wbz, rbz);
        brcst_bz = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, bz);

        auto br  = prog.insert_instruction(ins, op::add{}, wbr, rbr);
        brcst_br = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, br);

        auto bh  = prog.insert_instruction(ins, op::add{}, wbh, rbh);
        brcst_bh = prog.insert_instruction(ins, op::broadcast{1, sih->get_shape()}, bh);
    }

    for(long i = 0; i < seq_len; i++)
    {
        long seq_index = is_forward ? i : (seq_len - 1 - i);
        auto xt = prog.insert_instruction(ins, op::slice{{0}, {seq_index}, {seq_index + 1}}, seq);
        xt      = prog.insert_instruction(ins, op::squeeze{{0}}, xt);

        // equation f(xt*(Wz^T) + Ht-1 * (Rz^T) + Wbz + Rbz)
        auto xt_wz = prog.insert_instruction(ins, op::dot{}, xt, tran_wz);
        auto ht_rz = prog.insert_instruction(ins, op::dot{}, sih, tran_rz);
        auto xht_z = prog.insert_instruction(ins, op::add{}, xt_wz, ht_rz);
        if(bias != prog.end())
        {
            xht_z = prog.insert_instruction(ins, op::add{}, xht_z, brcst_bz);
        }
        auto zt = prog.insert_instruction(ins, actv_func1, xht_z);

        // equation f(Xt*(Wr^T) + Ht-1*(Rr^T) + Wbr + Rbr)
        auto xt_wr = prog.insert_instruction(ins, op::dot{}, xt, tran_wr);
        auto ht_rr = prog.insert_instruction(ins, op::dot{}, sih, tran_rr);
        auto xht_r = prog.insert_instruction(ins, op::add{}, xt_wr, ht_rr);
        if(bias != prog.end())
        {
            xht_r = prog.insert_instruction(ins, op::add{}, xht_r, brcst_br);
        }
        auto rt = prog.insert_instruction(ins, actv_func1, xht_r);

        instruction_ref xht_h;
        if(linear_before_reset == 0)
        {
            // equation g(Xt*(Wh^T) + (rt (.) Ht-1)*(Rh^T) + Rbh + Wbh)
            auto xt_wh  = prog.insert_instruction(ins, op::dot{}, xt, tran_wh);
            auto rt_ht1 = prog.insert_instruction(ins, op::mul{}, rt, sih);
            auto rt_rh  = prog.insert_instruction(ins, op::dot{}, rt_ht1, tran_rh);
            xht_h       = prog.insert_instruction(ins, op::add{}, xt_wh, rt_rh);
            if(bias != prog.end())
            {
                xht_h = prog.insert_instruction(ins, op::add{}, xht_h, brcst_bh);
            }
        }
        else
        {
            // equation ht = g(Xt*(Wh^T) + (rt (.) (Ht-1*(Rh^T) + Rbh)) + Wbh)
            auto xt_wh  = prog.insert_instruction(ins, op::dot{}, xt, tran_wh);
            auto ht1_rh = prog.insert_instruction(ins, op::dot{}, sih, tran_rh);
            if(bias != prog.end())
            {
                ht1_rh = prog.insert_instruction(ins, op::add{}, ht1_rh, brcst_rbh);
            }
            auto rt_rh = prog.insert_instruction(ins, op::mul{}, rt, ht1_rh);
            xht_h      = prog.insert_instruction(ins, op::add{}, xt_wh, rt_rh);
            if(bias != prog.end())
            {
                xht_h = prog.insert_instruction(ins, op::add{}, xht_h, brcst_wbh);
            }
        }
        auto ht = prog.insert_instruction(ins, actv_func2, xht_h);

        // equation Ht = (1 - zt) (.) ht + zt (.) Ht-1
        auto one_minus_zt    = prog.insert_instruction(ins, op::sub{}, l1, zt);
        auto one_minus_zt_ht = prog.insert_instruction(ins, op::mul{}, one_minus_zt, ht);
        auto zt_ht1          = prog.insert_instruction(ins, op::mul{}, zt, sih);
        sih                  = prog.insert_instruction(ins, op::add{}, one_minus_zt_ht, zt_ht1);
        last_output          = prog.insert_instruction(ins, op::unsqueeze{{0, 1}}, sih);

        if(i < seq_len - 1)
        {
            if(is_forward)
            {
                hidden_states =
                    (seq_index == 0)
                        ? last_output
                        : prog.insert_instruction(ins, op::concat{0}, hidden_states, last_output);
            }
            else
            {
                hidden_states =
                    (seq_index == seq_len - 1)
                        ? last_output
                        : prog.insert_instruction(ins, op::concat{0}, last_output, hidden_states);
            }
        }
    }

    return {hidden_states, last_output};
}

std::vector<operation> rewrite_rnn::gru_actv_funcs(instruction_ref ins) const
{
    auto gru_op = any_cast<op::gru>(ins->get_operator());
    // before rewrite the gru operator, need to ensure
    // we have 4 actv funcs, even though a user does not
    // specifiy any actv func. If less than 4, use the
    // algorithm in parse_gru to make 4 actv functions
    if(gru_op.direction == op::gru::bidirectional)
    {
        if(gru_op.actv_funcs.empty())
            return {op::sigmoid{}, op::tanh{}, op::sigmoid{}, op::tanh{}};
        else if(gru_op.actv_funcs.size() == 1)
            return {gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(0)};
        else if(gru_op.actv_funcs.size() == 2)
            return {gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(1),
                    gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(1)};
        else if(gru_op.actv_funcs.size() == 3)
            return {gru_op.actv_funcs.at(0),
                    gru_op.actv_funcs.at(1),
                    gru_op.actv_funcs.at(2),
                    gru_op.actv_funcs.at(0)};
        else
            return gru_op.actv_funcs;
    }
    else
    {
        if(gru_op.actv_funcs.empty())
            return {op::sigmoid{}, op::tanh{}};
        else if(gru_op.actv_funcs.size() == 1)
            return {gru_op.actv_funcs.at(0), gru_op.actv_funcs.at(0)};
        else
            return gru_op.actv_funcs;
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
671
672
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx