"vscode:/vscode.git/clone" did not exist on "d7becadcf7ab50710066ae50848ebf7b64163a32"
simplify_algebra.cpp 54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

42
43
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_SIMPLIFY_ALGEBRA_MATCHES)

Paul's avatar
Paul committed
44
namespace migraphx {
Paul's avatar
Paul committed
45
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
46

Paul's avatar
Paul committed
47
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
48
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
49
50
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
51
52
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
53
54
}

Paul's avatar
Paul committed
55
56
auto conv_const_weights()
{
57
58
59
    return match::name("convolution")(
        match::used_once(),
        match::args(match::none_of(match::is_constant()), match::is_constant().bind("w")));
Paul's avatar
Paul committed
60
61
}

Shucai Xiao's avatar
Shucai Xiao committed
62
63
auto reduction() { return match::name_contains("reduce"); }

64
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
65
66
67
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
68
    {
69
70
71
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
72
    }
Paul's avatar
Paul committed
73

74
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
75
    {
Paul's avatar
Paul committed
76
        auto ins      = r.result;
Paul's avatar
Paul committed
77
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
78
79
80
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
105
106
            return;

107
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
108
        auto new_a = m.insert_instruction(
109
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
110
111
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
112
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
113
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
114
    }
Paul's avatar
Paul committed
115
116
};

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

133
    void apply(module& m, const match::matcher_result& r) const
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
169
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
170

171
        auto new_a = m.insert_instruction(
172
            ins,
173
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
174
            a_ins->inputs().front());
175
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
176
177
178

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
179
            sliced_weights.push_back(m.insert_instruction(
180
181
182
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
183
184
185
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
186
            sliced_weights.push_back(m.insert_instruction(
187
188
189
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
190

191
        auto new_weights =
192
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
193

194
        auto new_conv = m.insert_instruction(
195
196
197
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

198
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
199
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
200
        m.replace_instruction(ins, slice1);
201
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
202
203
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
204
205
206
207
208
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
struct find_mul_dot
{
    auto matcher() const
    {
        auto is_dot_const_inputs =
            match::name("dot")(match::any_of[match::inputs()](match::is_constant()));
        return match::name("mul")(match::either_arg(0, 1)(
            is_dot_const_inputs.bind("dot"), match::name("broadcast", "multibroadcast").bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins     = r.result;
        auto dot_ins = r.instructions["dot"];
        auto a_ins   = dot_ins->inputs()[0];
        auto b_ins   = dot_ins->inputs()[1];
        auto c_ins   = r.instructions["c"];

        const auto& c_strides = c_ins->get_shape().strides();

        // There should only be one stride that is not zero
        if(std::count_if(c_strides.begin(), c_strides.end(), [](auto s) { return s != 0; }) > 1)
            return;

        auto add_mul_const = [&](instruction_ref x_ins) {
            if(not x_ins->can_eval())
                return m.end();
            auto broadcast_v        = c_ins->get_operator().to_value();
            broadcast_v["out_lens"] = x_ins->get_shape().lens();

            auto cb_ins =
                m.insert_instruction(ins, make_op(c_ins->name(), broadcast_v), c_ins->inputs());
            return m.insert_instruction(ins, make_op("mul"), x_ins, cb_ins);
        };

        if(c_strides.back() == 1)
        {
            b_ins = add_mul_const(b_ins);
        }
        else if(c_strides[c_strides.size() - 2] == 1)
        {
            a_ins = add_mul_const(a_ins);
        }
        else if(c_ins->get_shape().scalar())
        {
            if(a_ins->can_eval())
                a_ins = add_mul_const(a_ins);
            else
                b_ins = add_mul_const(b_ins);
        }
        else
        {
            return;
        }

        if(contains({a_ins, b_ins}, m.end()))
            return;

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

struct find_dot_mul
{
    auto matcher() const
    {
        auto const_broadcast = match::name("broadcast", "multibroadcast")(match::is_constant());
        auto mul             = match::name("mul")(
            match::used_once(),
            match::either_arg(0, 1)(const_broadcast.bind("d"),
                                    match::none_of(match::is_constant()).bind("z")));
        return match::name("dot")(match::either_arg(0, 1)(mul, match::is_constant().bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = ins->inputs()[0];
        auto b_ins = ins->inputs()[1];
        auto d_ins = r.instructions["d"];
        auto c_ins = r.instructions["c"];
        auto z_ins = r.instructions["z"];

        const auto& d_strides = d_ins->get_shape().strides();

        // There should only be one stride that is not zero
        if(std::count_if(d_strides.begin(), d_strides.end(), [](auto s) { return s != 0; }) > 1)
            return;

        if(not d_ins->get_shape().scalar())
        {
            if(d_strides.back() == 1 and not b_ins->can_eval())
                return;
            if(d_strides[d_strides.size() - 2] == 1 and not a_ins->can_eval())
                return;
        }

        auto broadcast_v = d_ins->get_operator().to_value();
        auto c_lens      = c_ins->get_shape().lens();
        std::vector<int64_t> permutation(c_lens.size());
        std::iota(permutation.begin(), permutation.end(), 0);
        std::swap(permutation.back(), permutation[permutation.size() - 2]);
        c_lens                  = reorder_dims(c_lens, permutation);
        broadcast_v["out_lens"] = c_lens;
        auto db_ins =
            m.insert_instruction(ins, make_op(d_ins->name(), broadcast_v), d_ins->inputs());
        auto db_transpose_ins =
            m.insert_instruction(ins, make_op("transpose", {{"permutation", permutation}}), db_ins);
        auto cd_ins = m.insert_instruction(ins, make_op("mul"), c_ins, db_transpose_ins);

        if(c_ins == b_ins)
        {
            a_ins = z_ins;
            b_ins = cd_ins;
        }
        else
        {
            a_ins = cd_ins;
            b_ins = z_ins;
        }

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

334
335
336
337
338
339
// ******************************
//  a * (x + b) => a * x + a * b
// ******************************
// When a * (x + b) is followed by another add of constant, then the
// additional add can be const folded. Also, better fusions can be applied
// when the add comes after.
Paul's avatar
Paul committed
340
341
342
343
344
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
345
346
347
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
348
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
349
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
350
                match::used_once()),
Paul's avatar
Paul committed
351
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
352
353
    }

354
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
355
    {
Paul's avatar
Paul committed
356
        auto ins   = r.result;
Paul's avatar
Paul committed
357
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
358
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
359
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
360
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
361

362
363
364
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
365
366
367
    }
};

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
struct find_conv_add
{
    auto matcher() const
    {
        auto add = match::name("add")(
            match::either_arg(0, 1)(match::any().bind("x"),
                                    match::any_of(match::is_constant()).bind("a")),
            match::used_once());
        return match::name("convolution")(match::used_once(),
                                          match::args(add, match::is_constant().bind("w")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto x_ins = r.instructions["x"];
        auto w_ins = r.instructions["w"];

        auto conv1 = m.insert_instruction(ins, ins->get_operator(), a_ins, w_ins);
        auto conv2 = m.insert_instruction(ins, ins->get_operator(), x_ins, w_ins);

        m.replace_instruction(ins, make_op("add"), conv1, conv2);
    }
};

Paul's avatar
Paul committed
430
struct find_add_lit_broadcast
Paul's avatar
Paul committed
431
432
433
434
435
436
437
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

438
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
439
440
441
442
443
444
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

445
446
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
447
448
449
450
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
451
{
Paul's avatar
Paul committed
452
453
    auto matcher() const
    {
Paul's avatar
Paul committed
454
        return match::name("add")(
Paul's avatar
Paul committed
455
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
456
457
    }

458
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
459
    {
Paul's avatar
Paul committed
460
461
462
463
464
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
465
466
467

        instruction_ref sumab;

Paul's avatar
Paul committed
468
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
469
470
471
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
472
            auto op     = a_ins->get_operator();
473
            auto presum = m.insert_instruction(
474
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
475
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
476
477
478
        }
        else
        {
479
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
480
481
        }

482
483
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
484
485
486
    }
};

Paul's avatar
Paul committed
487
488
struct find_inner_broadcast
{
489
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
490

491
492
493
494
495
496
497
498
499
    static auto non_scalar_op(const std::string& name)
    {
        return [=](instruction_ref ins) {
            if(ins->get_shape().scalar())
                return false;
            return ins->name() == name;
        };
    }

500
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
501
    {
502
503
504
505
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
506
507
508
509
510
        // Skip if different data types are used
        if(any_of(broadcasts, [&](auto i) {
               return i->get_shape().type() != broadcasts.front()->get_shape().type();
           }))
            return;
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        bool mixed_broadcasts = any_of(broadcasts, non_scalar_op("broadcast")) and
                                any_of(broadcasts, non_scalar_op("multibroadcast"));
        // If the broadcast is not a single dimension, then dont perform inner_broadcast
        if(mixed_broadcasts and any_of(broadcasts, [&](instruction_ref i) {
               if(i->get_shape().scalar())
                   return false;
               if(i->name() == "multibroadcast")
                   return false;
               auto input       = i->inputs().at(0);
               const auto& lens = input->get_shape().lens();
               return std::count_if(lens.begin(), lens.end(), [&](std::size_t d) {
                          return d == 1;
                      }) < (lens.size() - 1);
           }))
            return;
526
527
528
529
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
                       [&](instruction_ref i) {
                           auto input = i->inputs().front();
                           if(mixed_broadcasts and not i->get_shape().scalar() and
                              i->get_shape().lens().size() > 1)
                               return m.insert_instruction(i, make_op("squeeze"), input);
                           return input;
                       });

        std::sort(broadcasts.begin(), broadcasts.end(), by(std::less<>{}, [](instruction_ref i) {
                      if(i->get_shape().scalar())
                          return 2;
                      else if(i->name() == "broadcast")
                          return 0;
                      if(i->name() == "multibroadcast")
                          return 1;
                      return 3;
                  }));
547
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        m.replace_instruction(ins, broadcasts.front()->get_operator(), op);
    }
};

struct find_dot_broadcast
{
    auto matcher() const
    {
        return match::name("dot")(match::all_of[match::inputs()](match::broadcast()));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;
        auto a   = ins->inputs()[0];
        auto b   = ins->inputs()[1];
        if(a->get_operator().name() != b->get_operator().name())
            return;
        if(ins->get_shape().lens().size() < 3)
            return;
        auto nbatch_axes      = ins->get_shape().lens().size() - 2;
        const auto& a_strides = a->get_shape().strides();
        const auto& b_strides = b->get_shape().strides();
        // Find leading batch axes that are broadcasted
        auto p =
            std::mismatch(a_strides.begin(),
                          a_strides.begin() + nbatch_axes,
                          b_strides.begin(),
                          b_strides.begin() + nbatch_axes,
                          [](auto astride, auto bstride) { return astride == 0 and bstride == 0; });
        auto naxes = p.first - a_strides.begin();
        assert(naxes <= nbatch_axes);
        std::vector<std::size_t> axes(naxes);
        std::iota(axes.begin(), axes.end(), 0);

        auto insert_broadcast = [&](instruction_ref b_ins) -> instruction_ref {
            auto input = b_ins->inputs()[0];
            std::vector<std::size_t> lens(b_ins->get_shape().lens().begin() + naxes,
                                          b_ins->get_shape().lens().end());
            if(b_ins->name() == "multibroadcast")
            {
                return m.insert_instruction(
                    ins, make_op("multibroadcast", {{"out_lens", lens}}), input);
            }
            else if(b_ins->name() == "broadcast")
            {
                auto v    = b_ins->get_operator().to_value();
                auto axis = v.at("axis").to<std::size_t>() - naxes;
                return m.insert_instruction(
                    ins, make_op("broadcast", {{"axis", axis}, {"out_lens", lens}}), input);
            }
            assert(false);
            return m.end();
        };
        auto a1        = insert_broadcast(a);
        auto b1        = insert_broadcast(b);
        auto dot       = m.insert_instruction(ins, make_op("dot"), a1, b1);
        auto broadcast = m.insert_instruction(
            ins, make_op("multibroadcast", {{"out_lens", ins->get_shape().lens()}}), dot);
        m.replace_instruction(ins, broadcast);
Paul's avatar
Paul committed
608
609
610
    }
};

611
struct find_concat_op
612
613
614
{
    auto matcher() const
    {
615
        return match::name("concat")(match::any_of[match::inputs()](
616
617
            match::any_of(match::pointwise(), match::name("broadcast", "multibroadcast")),
            match::used_once()));
618
619
    }

620
621
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
622
    {
623
624
625
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
626
        {
627
            dim += ins->get_shape().lens().at(axis);
628
        }
629
630
631
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
632
633
    }

634
635
    static bool is_valid_op(const operation& op)
    {
636
637
        return contains({"broadcast", "multibroadcast"}, op.name()) or
               op.attributes().contains("pointwise");
638
639
    }

640
    void apply(module& m, const match::matcher_result& r) const
641
    {
642
643
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
644

645
646
647
648
649
650
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
651
652
            auto op = x->get_operator();
            if(not is_valid_op(op))
653
654
655
656
657
658
659
660
661
662
663
664
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }
665
666
667
668
669
670
671
672
673
674
            else if(op.name() == "multibroadcast")
            {
                shape bshape = (*start)->get_shape();
                auto input   = (*start)->inputs()[0];
                if(iaxis >= bshape.strides().size() or bshape.strides()[iaxis] == 0)
                    return {start, last};
                op.from_value({{"out_lens", get_output_lens(start, last, iaxis)}});
                auto delta = bshape.lens().size() - input->get_shape().lens().size();
                iaxis -= delta;
            }
675
676
677
678
679
680
681
682

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
683
                auto concat =
684
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
685
686
                concats.push_back(concat);
            }
687
            auto y = m.insert_instruction(ins, op, concats);
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
703
            m.replace_instruction(ins, args.front());
704
        else
705
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
706
707
708
    }
};

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
765
766
767
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
768
769
    }

Shucai Xiao's avatar
Shucai Xiao committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

789
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
790
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
807

808
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
809
810
811
812
813
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
814
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
815
816
                }

817
818
819
820
821
822
823
824
825
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

851
    void apply(module& m, const match::matcher_result& r) const
852
    {
Shucai Xiao's avatar
Shucai Xiao committed
853
        auto ins    = r.result;
854
855
856
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
857

858
        for(const auto& group : get_split_groups(m, splits))
859
        {
Shucai Xiao's avatar
Shucai Xiao committed
860
861
862
863
864
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
865
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
866
            }
867
868
869
870
871
872

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
873
            instruction_ref c = m.end();
874
875
            if(start->inputs().size() == 1)
            {
876
                c = m.insert_instruction(std::next(ins), op, ins);
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

902
                move_instructions_back(m, ins, data_args);
903
904
905
906
907
908
909

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
910
                auto concat = m.insert_instruction(
911
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
912
913
914
915
916

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
917
                c               = m.insert_instruction(std::next(ins), op, args);
918
            }
919
            if(c != m.end())
920
921
922
923
924
925
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
926
927
                    auto outputs = i->outputs();
                    for(auto output : outputs)
928
                    {
929
                        if(output->name() != "reshape")
930
                            continue;
931
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
932
                        m.replace_instruction(output, output->get_operator(), x);
933
934
                    }

935
                    m.replace_instruction(i, split->get_operator(), c);
936
937
938
939
940
941
942
943
944
945
946
947
948
949
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

950
    void apply(module& m, const match::matcher_result& r) const
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
979
980
981
982
983
984
985
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
986
987
988
989
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
990
            m.replace_instruction(concat, args.front());
991
        else
992
            m.replace_instruction(concat, concat->get_operator(), args);
993
994
995
    }
};

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

1035
    void apply(module& m, const match::matcher_result& r) const
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
1064
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1065
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
1066
1067
1068
1069
1070
1071
1072
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
1073
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1074
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
1075
1076
1077
1078
1079
1080
1081
1082
                }
                else
                    return;
            }
            else
                return;
        }

1083
        auto concat_input =
1084
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
1085
        auto concat_weights =
1086
1087
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
1088
1089
1090
    }
};

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
1101
    return (dots >= 2 or convs >= 2);
1102
1103
1104
1105
1106
1107
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

1108
    void apply(module& m, const match::matcher_result& r) const
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
1121
            // Check that non-axes match
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
1136
1137
1138
1139
1140
1141
1142
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

1155
            move_instructions_back(m, input, args);
1156
            // TODO: Check if axes match
1157
            auto concat =
1158
1159
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
1160
1161
1162
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1163
1164
1165
1166
1167
1168
1169
1170
1171
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1172
                int64_t len = arg->get_shape().lens()[axis];
1173
                m.replace_instruction(
1174
1175
1176
1177
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1178
1179
1180
1181
1182
1183
1184
1185
1186
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1187
1188
1189
1190
1191
1192
1193
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1194
    void apply(module& m, const match::matcher_result& r) const
1195
1196
1197
1198
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1199
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1200
1201
1202

        auto args = ins->inputs();

1203
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1204
1205
1206
    }
};

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1249
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1274
1275
1276
1277
1278
1279
1280
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1281
    void apply(module& m, const match::matcher_result& r) const
1282
1283
1284
1285
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1286
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1287
1288
1289

        auto args = ins->inputs();

1290
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1291
1292
1293
    }
};

kahmed10's avatar
kahmed10 committed
1294
1295
1296
1297
1298
1299
1300
1301
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1302
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1303
1304
1305
1306
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1307
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1308
1309
1310
    }
};

1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1327
    void apply(module& m, const match::matcher_result& r) const
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1353
1354
1355
1356
1357
1358
1359
1360
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1361
        if(not same_ops(vec_rsp))
1362
1363
1364
1365
1366
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1377
1378
1379

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1380
        if(ait == rsp_strides.end())
1381
1382
1383
        {
            return;
        }
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1397
        // calculate reshape output shape
1398
        std::vector<int64_t> vec_dims(vec_rsp.size());
1399

1400
1401
1402
1403
1404
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1405

1406
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1407

1408
1409
1410
1411
1412
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1413
        auto rsp_ins = m.insert_instruction(
1414
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1415
1416

        // replace the original reshape with slice
1417
1418
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1419
        {
1420
            m.replace_instruction(
1421
1422
1423
1424
1425
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1426
            start += vec_dims[i];
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1439
    void apply(module& m, const match::matcher_result& r) const
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1459
        if(not same_ops(vec_trans))
1460
1461
1462
1463
1464
        {
            return;
        }

        // insert an transpose instruction
1465
        auto tr = m.insert_instruction(
1466
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1467
1468
1469
1470
1471

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1472
        int64_t axis_new = std::distance(perm.begin(), it);
1473
1474
1475
1476
1477
1478
1479

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1480
            m.replace_instruction(
1481
1482
1483
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1484
1485
1486
1487
        }
    }
};

1488
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1489
{
1490
1491
    size_t trace = value_of(MIGRAPHX_TRACE_SIMPLIFY_ALGEBRA_MATCHES{});

Paul's avatar
Paul committed
1492
    // Run simplifications multiple times
1493
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1494
    {
1495
1496
        match::find_matches(trace,
                            m,
Paul's avatar
Paul committed
1497
                            find_inner_broadcast{},
1498
                            find_dot_broadcast{},
Paul's avatar
Paul committed
1499
1500
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1501
                            find_add_convs{},
1502
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1503
                            find_mul_conv{},
1504
                            find_mul_slice_conv{},
1505
1506
                            find_mul_dot{},
                            find_dot_mul{},
1507
                            find_mul_add{},
1508
1509
1510
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1511
                            find_dot_add{},
1512
                            find_conv_add{},
1513
1514
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1515
                            find_rsqrt{},
1516
                            find_concat_op{},
1517
                            find_split_concat{},
1518
1519
1520
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1521
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1522
    }
Paul's avatar
Paul committed
1523
}
Paul's avatar
Paul committed
1524

Paul's avatar
Paul committed
1525
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1526
} // namespace migraphx