"src/vscode:/vscode.git/clone" did not exist on "80203608fa9c1ffd84667e2e203113b054a6202e"
simplify_algebra.cpp 49.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
55
56
57
    return match::name("convolution")(
        match::used_once(),
        match::args(match::none_of(match::is_constant()), match::is_constant().bind("w")));
Paul's avatar
Paul committed
58
59
}

Shucai Xiao's avatar
Shucai Xiao committed
60
61
auto reduction() { return match::name_contains("reduce"); }

62
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
63
64
65
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
66
    {
67
68
69
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
70
    }
Paul's avatar
Paul committed
71

72
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
73
    {
Paul's avatar
Paul committed
74
        auto ins      = r.result;
Paul's avatar
Paul committed
75
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
76
77
78
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
103
104
            return;

105
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
106
        auto new_a = m.insert_instruction(
107
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
108
109
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
110
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
111
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
112
    }
Paul's avatar
Paul committed
113
114
};

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

131
    void apply(module& m, const match::matcher_result& r) const
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
167
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
168

169
        auto new_a = m.insert_instruction(
170
            ins,
171
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
172
            a_ins->inputs().front());
173
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
174
175
176

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
177
            sliced_weights.push_back(m.insert_instruction(
178
179
180
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
181
182
183
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
184
            sliced_weights.push_back(m.insert_instruction(
185
186
187
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
188

189
        auto new_weights =
190
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
191

192
        auto new_conv = m.insert_instruction(
193
194
195
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

196
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
197
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
198
        m.replace_instruction(ins, slice1);
199
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
200
201
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
202
203
204
205
206
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

207
208
209
210
211
212
// ******************************
//  a * (x + b) => a * x + a * b
// ******************************
// When a * (x + b) is followed by another add of constant, then the
// additional add can be const folded. Also, better fusions can be applied
// when the add comes after.
Paul's avatar
Paul committed
213
214
215
216
217
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
218
219
220
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
221
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
222
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
223
                match::used_once()),
Paul's avatar
Paul committed
224
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
225
226
    }

227
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
228
    {
Paul's avatar
Paul committed
229
        auto ins   = r.result;
Paul's avatar
Paul committed
230
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
231
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
232
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
233
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
234

235
236
237
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
238
239
240
    }
};

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
struct find_conv_add
{
    auto matcher() const
    {
        auto add = match::name("add")(
            match::either_arg(0, 1)(match::any().bind("x"),
                                    match::any_of(match::is_constant()).bind("a")),
            match::used_once());
        return match::name("convolution")(match::used_once(),
                                          match::args(add, match::is_constant().bind("w")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto x_ins = r.instructions["x"];
        auto w_ins = r.instructions["w"];

        auto conv1 = m.insert_instruction(ins, ins->get_operator(), a_ins, w_ins);
        auto conv2 = m.insert_instruction(ins, ins->get_operator(), x_ins, w_ins);

        m.replace_instruction(ins, make_op("add"), conv1, conv2);
    }
};

Paul's avatar
Paul committed
303
struct find_add_lit_broadcast
Paul's avatar
Paul committed
304
305
306
307
308
309
310
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

311
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
312
313
314
315
316
317
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

318
319
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
320
321
322
323
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
324
{
Paul's avatar
Paul committed
325
326
    auto matcher() const
    {
Paul's avatar
Paul committed
327
        return match::name("add")(
Paul's avatar
Paul committed
328
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
329
330
    }

331
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
332
    {
Paul's avatar
Paul committed
333
334
335
336
337
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
338
339
340

        instruction_ref sumab;

Paul's avatar
Paul committed
341
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
342
343
344
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
345
            auto op     = a_ins->get_operator();
346
            auto presum = m.insert_instruction(
347
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
348
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
349
350
351
        }
        else
        {
352
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
353
354
        }

355
356
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
357
358
359
    }
};

Paul's avatar
Paul committed
360
361
struct find_inner_broadcast
{
362
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
363

364
365
366
367
368
369
370
371
372
    static auto non_scalar_op(const std::string& name)
    {
        return [=](instruction_ref ins) {
            if(ins->get_shape().scalar())
                return false;
            return ins->name() == name;
        };
    }

373
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
374
    {
375
376
377
378
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
        bool mixed_broadcasts = any_of(broadcasts, non_scalar_op("broadcast")) and
                                any_of(broadcasts, non_scalar_op("multibroadcast"));
        // If the broadcast is not a single dimension, then dont perform inner_broadcast
        if(mixed_broadcasts and any_of(broadcasts, [&](instruction_ref i) {
               if(i->get_shape().scalar())
                   return false;
               if(i->name() == "multibroadcast")
                   return false;
               auto input       = i->inputs().at(0);
               const auto& lens = input->get_shape().lens();
               return std::count_if(lens.begin(), lens.end(), [&](std::size_t d) {
                          return d == 1;
                      }) < (lens.size() - 1);
           }))
            return;
394
395
396
397
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
                       [&](instruction_ref i) {
                           auto input = i->inputs().front();
                           if(mixed_broadcasts and not i->get_shape().scalar() and
                              i->get_shape().lens().size() > 1)
                               return m.insert_instruction(i, make_op("squeeze"), input);
                           return input;
                       });

        std::sort(broadcasts.begin(), broadcasts.end(), by(std::less<>{}, [](instruction_ref i) {
                      if(i->get_shape().scalar())
                          return 2;
                      else if(i->name() == "broadcast")
                          return 0;
                      if(i->name() == "multibroadcast")
                          return 1;
                      return 3;
                  }));
415
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        m.replace_instruction(ins, broadcasts.front()->get_operator(), op);
    }
};

struct find_dot_broadcast
{
    auto matcher() const
    {
        return match::name("dot")(match::all_of[match::inputs()](match::broadcast()));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;
        auto a   = ins->inputs()[0];
        auto b   = ins->inputs()[1];
        if(a->get_operator().name() != b->get_operator().name())
            return;
        if(ins->get_shape().lens().size() < 3)
            return;
        auto nbatch_axes      = ins->get_shape().lens().size() - 2;
        const auto& a_strides = a->get_shape().strides();
        const auto& b_strides = b->get_shape().strides();
        // Find leading batch axes that are broadcasted
        auto p =
            std::mismatch(a_strides.begin(),
                          a_strides.begin() + nbatch_axes,
                          b_strides.begin(),
                          b_strides.begin() + nbatch_axes,
                          [](auto astride, auto bstride) { return astride == 0 and bstride == 0; });
        auto naxes = p.first - a_strides.begin();
        assert(naxes <= nbatch_axes);
        std::vector<std::size_t> axes(naxes);
        std::iota(axes.begin(), axes.end(), 0);

        auto insert_broadcast = [&](instruction_ref b_ins) -> instruction_ref {
            auto input = b_ins->inputs()[0];
            std::vector<std::size_t> lens(b_ins->get_shape().lens().begin() + naxes,
                                          b_ins->get_shape().lens().end());
            if(b_ins->name() == "multibroadcast")
            {
                return m.insert_instruction(
                    ins, make_op("multibroadcast", {{"out_lens", lens}}), input);
            }
            else if(b_ins->name() == "broadcast")
            {
                auto v    = b_ins->get_operator().to_value();
                auto axis = v.at("axis").to<std::size_t>() - naxes;
                return m.insert_instruction(
                    ins, make_op("broadcast", {{"axis", axis}, {"out_lens", lens}}), input);
            }
            assert(false);
            return m.end();
        };
        auto a1        = insert_broadcast(a);
        auto b1        = insert_broadcast(b);
        auto dot       = m.insert_instruction(ins, make_op("dot"), a1, b1);
        auto broadcast = m.insert_instruction(
            ins, make_op("multibroadcast", {{"out_lens", ins->get_shape().lens()}}), dot);
        m.replace_instruction(ins, broadcast);
Paul's avatar
Paul committed
476
477
478
    }
};

479
struct find_concat_op
480
481
482
{
    auto matcher() const
    {
483
        return match::name("concat")(match::any_of[match::inputs()](
484
485
            match::any_of(match::pointwise(), match::name("broadcast", "multibroadcast")),
            match::used_once()));
486
487
    }

488
489
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
490
    {
491
492
493
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
494
        {
495
            dim += ins->get_shape().lens().at(axis);
496
        }
497
498
499
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
500
501
    }

502
503
    static bool is_valid_op(const operation& op)
    {
504
505
        return contains({"broadcast", "multibroadcast"}, op.name()) or
               op.attributes().contains("pointwise");
506
507
    }

508
    void apply(module& m, const match::matcher_result& r) const
509
    {
510
511
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
512

513
514
515
516
517
518
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
519
520
            auto op = x->get_operator();
            if(not is_valid_op(op))
521
522
523
524
525
526
527
528
529
530
531
532
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }
533
534
535
536
537
538
539
540
541
542
            else if(op.name() == "multibroadcast")
            {
                shape bshape = (*start)->get_shape();
                auto input   = (*start)->inputs()[0];
                if(iaxis >= bshape.strides().size() or bshape.strides()[iaxis] == 0)
                    return {start, last};
                op.from_value({{"out_lens", get_output_lens(start, last, iaxis)}});
                auto delta = bshape.lens().size() - input->get_shape().lens().size();
                iaxis -= delta;
            }
543
544
545
546
547
548
549
550

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
551
                auto concat =
552
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
553
554
                concats.push_back(concat);
            }
555
            auto y = m.insert_instruction(ins, op, concats);
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
571
            m.replace_instruction(ins, args.front());
572
        else
573
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
574
575
576
    }
};

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
633
634
635
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
636
637
    }

Shucai Xiao's avatar
Shucai Xiao committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

657
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
658
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
675

676
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
677
678
679
680
681
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
682
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
683
684
                }

685
686
687
688
689
690
691
692
693
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

719
    void apply(module& m, const match::matcher_result& r) const
720
    {
Shucai Xiao's avatar
Shucai Xiao committed
721
        auto ins    = r.result;
722
723
724
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
725

726
        for(const auto& group : get_split_groups(m, splits))
727
        {
Shucai Xiao's avatar
Shucai Xiao committed
728
729
730
731
732
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
733
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
734
            }
735
736
737
738
739
740

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
741
            instruction_ref c = m.end();
742
743
            if(start->inputs().size() == 1)
            {
744
                c = m.insert_instruction(std::next(ins), op, ins);
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

770
                move_instructions_back(m, ins, data_args);
771
772
773
774
775
776
777

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
778
                auto concat = m.insert_instruction(
779
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
780
781
782
783
784

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
785
                c               = m.insert_instruction(std::next(ins), op, args);
786
            }
787
            if(c != m.end())
788
789
790
791
792
793
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
794
795
                    auto outputs = i->outputs();
                    for(auto output : outputs)
796
                    {
797
                        if(output->name() != "reshape")
798
                            continue;
799
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
800
                        m.replace_instruction(output, output->get_operator(), x);
801
802
                    }

803
                    m.replace_instruction(i, split->get_operator(), c);
804
805
806
807
808
809
810
811
812
813
814
815
816
817
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

818
    void apply(module& m, const match::matcher_result& r) const
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
847
848
849
850
851
852
853
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
854
855
856
857
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
858
            m.replace_instruction(concat, args.front());
859
        else
860
            m.replace_instruction(concat, concat->get_operator(), args);
861
862
863
    }
};

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

903
    void apply(module& m, const match::matcher_result& r) const
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
932
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
933
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
934
935
936
937
938
939
940
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
941
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
942
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
943
944
945
946
947
948
949
950
                }
                else
                    return;
            }
            else
                return;
        }

951
        auto concat_input =
952
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
953
        auto concat_weights =
954
955
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
956
957
958
    }
};

959
960
961
962
963
964
965
966
967
968
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
969
    return (dots >= 2 or convs >= 2);
970
971
972
973
974
975
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

976
    void apply(module& m, const match::matcher_result& r) const
977
978
979
980
981
982
983
984
985
986
987
988
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
989
            // Check that non-axes match
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
1004
1005
1006
1007
1008
1009
1010
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

1023
            move_instructions_back(m, input, args);
1024
            // TODO: Check if axes match
1025
            auto concat =
1026
1027
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
1028
1029
1030
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1031
1032
1033
1034
1035
1036
1037
1038
1039
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1040
                int64_t len = arg->get_shape().lens()[axis];
1041
                m.replace_instruction(
1042
1043
1044
1045
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1046
1047
1048
1049
1050
1051
1052
1053
1054
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1055
1056
1057
1058
1059
1060
1061
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1062
    void apply(module& m, const match::matcher_result& r) const
1063
1064
1065
1066
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1067
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1068
1069
1070

        auto args = ins->inputs();

1071
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1072
1073
1074
    }
};

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1117
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1142
1143
1144
1145
1146
1147
1148
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1149
    void apply(module& m, const match::matcher_result& r) const
1150
1151
1152
1153
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1154
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1155
1156
1157

        auto args = ins->inputs();

1158
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1159
1160
1161
    }
};

kahmed10's avatar
kahmed10 committed
1162
1163
1164
1165
1166
1167
1168
1169
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1170
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1171
1172
1173
1174
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1175
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1176
1177
1178
    }
};

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1195
    void apply(module& m, const match::matcher_result& r) const
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1221
1222
1223
1224
1225
1226
1227
1228
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1229
        if(not same_ops(vec_rsp))
1230
1231
1232
1233
1234
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1245
1246
1247

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1248
        if(ait == rsp_strides.end())
1249
1250
1251
        {
            return;
        }
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1265
        // calculate reshape output shape
1266
        std::vector<int64_t> vec_dims(vec_rsp.size());
1267

1268
1269
1270
1271
1272
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1273

1274
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1275

1276
1277
1278
1279
1280
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1281
        auto rsp_ins = m.insert_instruction(
1282
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1283
1284

        // replace the original reshape with slice
1285
1286
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1287
        {
1288
            m.replace_instruction(
1289
1290
1291
1292
1293
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1294
            start += vec_dims[i];
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1307
    void apply(module& m, const match::matcher_result& r) const
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1327
        if(not same_ops(vec_trans))
1328
1329
1330
1331
1332
        {
            return;
        }

        // insert an transpose instruction
1333
        auto tr = m.insert_instruction(
1334
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1335
1336
1337
1338
1339

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1340
        int64_t axis_new = std::distance(perm.begin(), it);
1341
1342
1343
1344
1345
1346
1347

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1348
            m.replace_instruction(
1349
1350
1351
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1352
1353
1354
1355
        }
    }
};

1356
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1357
{
Paul's avatar
Paul committed
1358
    // Run simplifications multiple times
1359
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1360
    {
1361
        match::find_matches(m,
Paul's avatar
Paul committed
1362
                            find_inner_broadcast{},
1363
                            find_dot_broadcast{},
Paul's avatar
Paul committed
1364
1365
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1366
                            find_add_convs{},
1367
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1368
                            find_mul_conv{},
1369
                            find_mul_slice_conv{},
1370
                            find_mul_add{},
1371
1372
1373
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1374
                            find_dot_add{},
1375
                            find_conv_add{},
1376
1377
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1378
                            find_rsqrt{},
1379
                            find_concat_op{},
1380
                            find_split_concat{},
1381
1382
1383
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1384
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1385
    }
Paul's avatar
Paul committed
1386
}
Paul's avatar
Paul committed
1387

Paul's avatar
Paul committed
1388
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1389
} // namespace migraphx