gemm_impl.cpp 22.5 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
28
29
30

/**
 * Contains a templated struct implementation that wraps several rocBLAS API calls
 * used by the GEMM operator.  These are accessed by methods declared in gemm_impl.hpp
 *
 */

31
#include <rocblas/rocblas.h>
32
#include <migraphx/gpu/gemm_impl.hpp>
Paul's avatar
Paul committed
33
34
#include <migraphx/reduce_dims.hpp>
#include <migraphx/generate.hpp>
35
36
37
38
#include <migraphx/time.hpp>

using microseconds = std::chrono::duration<double, std::micro>;

Shucai Xiao's avatar
Shucai Xiao committed
39
40
41
42
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

43
// Convert rocBLAS datatypes to equivalent Migraphx data types
44
rocblas_datatype get_type(shape::type_t type)
Shucai Xiao's avatar
Shucai Xiao committed
45
{
46
    switch(type)
47
    {
48
49
50
51
52
53
54
    case shape::double_type: return rocblas_datatype_f64_r;
    case shape::float_type: return rocblas_datatype_f32_r;
    case shape::half_type: return rocblas_datatype_f16_r;
    case shape::int8_type: return rocblas_datatype_i8_r;
    case shape::uint8_type: return rocblas_datatype_u8_r;
    case shape::int32_type: return rocblas_datatype_i32_r;
    case shape::uint32_type: return rocblas_datatype_u32_r;
Paul Fultz II's avatar
Paul Fultz II committed
55
    case shape::tuple_type:
56
    case shape::bool_type:
57
58
59
60
    case shape::uint16_type:
    case shape::int16_type:
    case shape::int64_type:
    case shape::uint64_type: MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
61
    }
62
63

    MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
64
65
}

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
void blas_shape(const shape& s)
{
    if(s.lens().size() < 2)
        return;
    if(std::none_of(s.strides().end() - 2, s.strides().end(), [&](auto i) { return i == 1; }))
        MIGRAPHX_THROW("GPU_GEMM: needs to have one matrix stride as 1");
    if(s.lens().size() < 3)
        return;
    shape batch_shape{s.type(),
                      {s.lens().begin(), s.lens().end() - 2},
                      {s.strides().begin(), s.strides().end() - 2}};
    auto batch_shapes = reduce_dims({batch_shape});
    if(batch_shapes.front().lens().size() != 1)
        MIGRAPHX_THROW("GPU_GEMM: Batch dimension is not collapsible");
}

82
83
84
85
86
87
88
89
90
91
92
93
94
shape transpose_batch(const shape& s, unsigned trans_batch)
{
    if(trans_batch == 0)
        return s;
    if(s.lens().size() < 3)
        return s;
    auto batch = s.lens().size() - 3;
    std::vector<int64_t> perm(s.lens().size());
    std::iota(perm.begin(), perm.end(), 0);
    std::swap(perm[batch], perm[batch + trans_batch]);
    return shape::from_permutation(s.type(), s.lens(), perm);
}

95
96
97
98
99
100
101
102
/**
 * Returns results of rocblas_status_success, rocblas_status_perf_degraded,
 * or rocblas_status_invalid_value.  Caller
 * is expected to check for invalid index.  Any other result causes an exception.
 *
 */
template <class F, class Pack, class... Ts>
auto rocblas_invoke(F f, Pack p, Ts... xs)
103
{
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    return p([=](auto... ws) {
        auto status = f(ws..., xs...);
        if(status != rocblas_status_success and status != rocblas_status_invalid_value)
        {
            if(status == rocblas_status_perf_degraded)
            {
                std::cerr << "WARNING: degraded perf. in rocBLAS call" << std::endl;
            }
            else
                MIGRAPHX_THROW("rocblas_invoke: rocBLAS call failed with status " +
                               std::to_string(status));
        }
        return status;
    });
118
119
}

120
static bool is_transposed(const shape& s) { return s.transposed() and s.strides().back() != 1; }
121

122
static rocblas_int get_batch_stride(const shape& s)
123
{
124
    // This value is not needed for non-strided inputs
125
    if(s.strides().size() < 3)
126
127
        return 0;
    else
128
        return s.strides()[s.strides().size() - 3];
129
130
}

131
132
133
134
135
/**
 * Wrapper for multiple rocBLAS calls.  The constructor creates parameters for
 * these calls based on data shapes and other values contained in the associated
 * instruction and operation.
 *
136
 * The template parameter T is not the type of the matrix data but of the weighting
137
138
139
140
 * coefficients alpha and beta (these are float in rocBLAS internals)
 */
template <typename T>
struct gemm_impl
Shucai Xiao's avatar
Shucai Xiao committed
141
{
142
143
144
145
146
147
148
149
150
    gemm_impl(const shape& output_shape,
              const std::vector<shape>& input_shapes,
              T alpha_param,
              T beta_param,
              bool compute_fp32_flag)
        : alpha(alpha_param),
          beta(beta_param),
          is_3inputs(input_shapes.size() == 4),
          compute_fp32(compute_fp32_flag)
151
    {
152
153
154
155
        if(not is_3inputs)
        {
            beta = 0;
        }
Paul's avatar
Format  
Paul committed
156
157
158
159
160
161
162

        // Create lambdas that will cast alpha, beta to the output shape's type
        // and retain the values being pointed to
        output_shape.visit_type([&](auto as) {
            auto alpha_r = as(alpha);
            auto beta_r  = as(beta);
            if(compute_fp32)
163
            {
Paul's avatar
Format  
Paul committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
                get_alpha = [=] { return &alpha; };
                get_beta  = [=] { return &beta; };
            }
            else
            {
                get_alpha = [=] { return &alpha_r; };
                get_beta  = [=] { return &beta_r; };
            }
        });

        transa     = is_transposed(input_shapes[0]);
        transb     = is_transposed(input_shapes[1]);
        auto n_dim = output_shape.lens().size();
        auto dim_0 = n_dim - 2;
        auto dim_1 = n_dim - 1;
        // Leading dimensions of matrices
        lda = input_shapes[0].strides()[transa ? dim_1 : dim_0];
        ldb = input_shapes[1].strides()[transb ? dim_1 : dim_0];
        ldc = input_shapes[2].strides()[dim_0];
        ldd = is_3inputs ? input_shapes[3].strides()[dim_0] : ldc;

        arg_type    = get_type(input_shapes[0].type());
        output_type = arg_type;
        if(output_type == rocblas_datatype_i8_r)
        {
            output_type = rocblas_datatype_i32_r;
Paul's avatar
Format  
Paul committed
190
        }
Paul's avatar
Paul committed
191
192
193
        compute_type = output_type;
        if(compute_fp32)
        {
Paul's avatar
Format  
Paul committed
194
195
            if(arg_type == rocblas_datatype_f16_r)
                compute_type = rocblas_datatype_f32_r;
Paul's avatar
Paul committed
196
        }
197

Paul's avatar
Paul committed
198
199
        auto a_lens = input_shapes[0].lens();
        auto b_lens = input_shapes[1].lens();
200

Paul's avatar
Paul committed
201
202
203
204
        auto out_lens = output_shape.lens();
        m             = out_lens[dim_0];
        n             = out_lens[dim_1];
        k             = input_shapes[0].lens()[dim_1];
Shucai Xiao's avatar
Shucai Xiao committed
205

Paul's avatar
Paul committed
206
207
208
209
        a_stride     = get_batch_stride(input_shapes[0]);
        b_stride     = get_batch_stride(input_shapes[1]);
        c_stride     = get_batch_stride(input_shapes[2]);
        d_stride     = is_3inputs ? get_batch_stride(input_shapes[3]) : c_stride;
Paul's avatar
Format  
Paul committed
210
211
        num_matrices = std::accumulate(
            out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
Paul's avatar
Paul committed
212
213
        if(num_matrices == 1 or (num_matrices > 1 and b_stride == 0))
        {
Paul's avatar
Format  
Paul committed
214
215
216
217
218
            // If the batch dimension of B is broadcasted, then we can
            // multiply m by the batch_size and use rocblas_gemm_ex
            // instead of rocblas_gemm_strided_batched_ex.
            m *= num_matrices;
            strided_batched = false;
Paul's avatar
Paul committed
219
        }
220
    }
221

222
223
224
225
226
227
228
    void run(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx = 0) const
    {
        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                           common_args,
229
                           rocblas_gemm_algo_standard,
230
                           solution_idx,
Paul's avatar
Paul committed
231
                           gemm_flags);
Shucai Xiao's avatar
Shucai Xiao committed
232
233
234
        }
        else
        {
235
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
Paul's avatar
Format  
Paul committed
236
237
238
239
240
            rocblas_invoke(&rocblas_gemm_ex,
                           common_args,
                           rocblas_gemm_algo_standard,
                           solution_idx,
                           gemm_flags);
Shucai Xiao's avatar
Shucai Xiao committed
241
        }
242
243
    }

Paul's avatar
Paul committed
244
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
245
246
    auto validate(context& ctx, const std::vector<shape>& input_shapes, int32_t solution_idx) const
    {
247
        // Create dummy arguments for the shapes, and call the overloaded method
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        std::vector<argument> input_args;
        std::transform(input_shapes.begin(),
                       input_shapes.end(),
                       std::back_inserter(input_args),
                       [](const shape& x) { return to_gpu(generate_argument(x)); });

        return validate(ctx, input_args, solution_idx);
    }

    /**
     * Checks a particular solution for validity by running it with the flag
     * rocblas_gemm_flags_check_solution_index (could be invalid if this model was
     * tuned with a different rocBLAS version)
     *
     * @return Returns either solution_idx if valid, or else the default value 0
     * if not.  The default does not mean list index 0, but tells the picker
     * to choose a solution.
     */
    int32_t
    validate(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx) const
    {
        rocblas_status_ check_valid(rocblas_status_success);

        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            check_valid      = rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                                         common_args,
                                         rocblas_gemm_algo_solution_index,
                                         solution_idx,
                                         rocblas_gemm_flags_check_solution_index);
        }
        else
        {
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            check_valid      = rocblas_invoke(&rocblas_gemm_ex,
                                         common_args,
285
                                         rocblas_gemm_algo_solution_index,
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
                                         solution_idx,
                                         rocblas_gemm_flags_check_solution_index);
        }

        if(check_valid == rocblas_status_invalid_value)
        {
            std::cerr << "WARNING:  tuned solution is invalid; reverting to default" << std::endl;
            return 0;
        }
        return solution_idx;
    }
#endif

    /**
     * Helper method to create that subset of a long rocBLAS argument list that is common
     * to multiple "...strided_batched..." calls.
     *
     * The rocblas_gemm API handles inputs and output matrices as
     *  column-major format. When doing a C = A * B, we actually do
     *  C^T = (B^T) * (A^T). That is the reason we input args[1] as
     *   A and args[0] as B in calling the rocblas_gemm.
     *
     */
    auto create_strided_batched_args_common(context& ctx, const std::vector<argument>& args) const
    {
        return pack(ctx.get_stream().get_rocblas(),
                    transb ? rocblas_operation_transpose : rocblas_operation_none,
                    transa ? rocblas_operation_transpose : rocblas_operation_none,
                    n,
                    m,
                    k,
                    get_alpha(),
                    args[1].data(),
                    arg_type,
                    ldb,
                    b_stride,
                    args[0].data(),
                    arg_type,
                    lda,
                    a_stride,
                    get_beta(),
                    args[2].data(),
                    output_type,
                    ldc,
                    c_stride,
                    is_3inputs ? args[3].data() : args[2].data(),
                    output_type,
                    ldd,
                    d_stride,
                    num_matrices,
                    compute_type);
    }

    /**
     * Helper method to create that subset of a long rocBLAS argument list that is common
     * to multiple "gemm_ex..." calls.
     *
     * The rocblas_gemm API handles inputs and output matrices as
     *  column-major format. When doing a C = A * B, we actually do
     *   C^T = (B^T) * (A^T). That is the reason we input args[1] as
     *   A and args[0] as B in calling the rocblas_gemm.
     *
     * */
    auto create_gemm_ex_args_common(context& ctx, const std::vector<argument>& args) const
    {
        return pack(ctx.get_stream().get_rocblas(),
                    transb ? rocblas_operation_transpose : rocblas_operation_none,
                    transa ? rocblas_operation_transpose : rocblas_operation_none,
                    n,
                    m,
                    k,
                    get_alpha(),
                    args[1].data(),
                    arg_type,
                    ldb,
                    args[0].data(),
                    arg_type,
                    lda,
                    get_beta(),
                    args[2].data(),
                    output_type,
                    ldc,
                    is_3inputs ? args[3].data() : args[2].data(),
                    output_type,
                    ldd,
                    compute_type);
    }
Paul's avatar
Paul committed
373
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
374
375
376
377
378
379
380
    /**
     * Find best rocBLAS solution:  Get list of solutions and try them all, returning the index
     * of the fastest one.
     */
    int tune(context& ctx, const std::vector<shape>& input_shapes) const
    {
        // tuning meta parameters
381
        const int hot_calls = 40;
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

        std::vector<argument> input_args;
        std::transform(input_shapes.begin(),
                       input_shapes.end(),
                       std::back_inserter(input_args),
                       [](const shape& x) { return to_gpu(generate_argument(x)); });

        // Get the solutions list in 2 rocBLAS steps:
        // 1.  Find out how many solutions there are and allocate the array
        // 2.  Get the solutions
        //
        rocblas_int list_size = 0;
        std::vector<rocblas_int> solution_indices;
        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex_get_solutions,
                           common_args,
                           rocblas_gemm_algo_solution_index,
Paul's avatar
Paul committed
401
                           gemm_flags,
402
403
404
405
406
407
408
409
                           nullptr,
                           &list_size);
            solution_indices.resize(list_size);

            auto common_sol_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex_get_solutions,
                           common_sol_args,
                           rocblas_gemm_algo_solution_index,
Paul's avatar
Paul committed
410
                           gemm_flags,
411
412
413
414
415
416
417
418
419
                           solution_indices.data(),
                           &list_size);
        }
        else
        {
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_ex_get_solutions,
                           common_args,
                           rocblas_gemm_algo_solution_index,
Paul's avatar
Paul committed
420
                           gemm_flags,
421
422
423
424
425
426
427
428
                           nullptr,
                           &list_size);
            solution_indices.resize(list_size);

            auto common_sol_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_ex_get_solutions,
                           common_sol_args,
                           rocblas_gemm_algo_solution_index,
Paul's avatar
Paul committed
429
                           gemm_flags,
430
431
432
433
                           solution_indices.data(),
                           &list_size);
        }

434
        double best_time  = std::numeric_limits<double>::max();
435
436
        double first_time = -1;
        // Initialize to default solution index
437
        rocblas_int best_sol = 0;
438
439
        for(auto sol : solution_indices)
        {
440
441
            // Warmup: the first call to an op. may not be representative since there is
            // more time taken initializing caches, etc. so we won't time it.
Paul's avatar
Paul committed
442
443
            run(ctx, input_args, sol);
            double host_time = time<milliseconds>([&] {
Paul's avatar
Format  
Paul committed
444
                for([[maybe_unused]] int hc : range(hot_calls))
Paul's avatar
Paul committed
445
                    run(ctx, input_args, sol);
446
                ctx.finish();
Paul's avatar
Paul committed
447
448
            });

449
450
451
452
453
            // todo:  Measured time dropped from 20 us to about 6.7 us when I raised hot_calls from
            // 1 to 11. The higher the hot_calls value, the faster per-call time up to at least 25,
            // and increasing cold_calls makes little or no difference.  Why?
            host_time /= hot_calls;

454
            // dev/evaluation only: track time for first solution.
455
456
457
458
            if(first_time < 0)
                first_time = host_time;

            // track current best
459
            if(host_time < best_time)
460
            {
461
462
                best_sol  = sol;
                best_time = host_time;
463
464
            }
        }
Paul's avatar
Paul committed
465
466
        std::cout << "Winning GEMM solution: " << best_sol << " in " << best_time << " ms, beats "
                  << first_time << "ms" << std::endl;
467
        return best_sol;
468
469
470
    }
#endif
    private:
Paul's avatar
Paul committed
471
    size_t num_matrices = 0;
Paul's avatar
Format  
Paul committed
472
473
474
475
476
477
478
    rocblas_int m       = 0;
    rocblas_int n       = 0;
    rocblas_int k       = 0;
    bool transa         = false;
    bool transb         = false;
    T alpha             = 0;
    T beta              = 0;
Paul's avatar
Paul committed
479
480
481

    std::function<const void*()> get_alpha{};
    std::function<const void*()> get_beta{};
Paul's avatar
Format  
Paul committed
482
    rocblas_gemm_flags gemm_flags = rocblas_gemm_flags_none;
Paul's avatar
Format  
Paul committed
483
484
485
486
487
488
489
490
    rocblas_int lda               = 0;
    rocblas_int ldb               = 0;
    rocblas_int ldc               = 0;
    rocblas_int ldd               = 0;
    rocblas_int a_stride          = 0;
    rocblas_int b_stride          = 0;
    rocblas_int c_stride          = 0;
    rocblas_int d_stride          = 0;
Paul's avatar
Paul committed
491
    rocblas_datatype compute_type = rocblas_datatype_f32_r;
Paul's avatar
Format  
Paul committed
492
493
494
495
496
    rocblas_datatype arg_type     = rocblas_datatype_f32_r;
    rocblas_datatype output_type  = rocblas_datatype_f32_r;
    bool strided_batched          = true;
    bool is_3inputs               = true;
    bool compute_fp32             = true;
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
}; // gemm_impl

void gemm_compute(context& ctx,
                  const shape& output_shape,
                  const std::vector<argument>& args,
                  float alpha,
                  float beta,
                  bool compute_fp32,
                  int32_t solution_idx)
{
    std::vector<shape> input_shapes;
    std::transform(args.begin(),
                   args.end(),
                   std::back_inserter(input_shapes),
                   [](const argument& x) { return x.get_shape(); });
Paul's avatar
Format  
Paul committed
512
    auto gemm_item = gemm_impl<float>(output_shape, input_shapes, alpha, beta, compute_fp32);
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    gemm_item.run(ctx, args, solution_idx);
}

void gemm_compute(context& ctx,
                  const shape& output_shape,
                  const std::vector<argument>& args,
                  int32_t alpha,
                  int32_t beta,
                  bool compute_fp32,
                  int32_t solution_idx)
{
    std::vector<shape> input_shapes;
    std::transform(args.begin(),
                   args.end(),
                   std::back_inserter(input_shapes),
                   [](const argument& x) { return x.get_shape(); });
Paul's avatar
Format  
Paul committed
529
    auto gemm_item = gemm_impl<int32_t>(output_shape, input_shapes, alpha, beta, compute_fp32);
530
    gemm_item.run(ctx, args, solution_idx);
531
}
Shucai Xiao's avatar
Shucai Xiao committed
532

533
534
535
536
/**
 * Decides if the tune() or validate() method is appropriate and calls it.
 * Return value is the chosen solution index, or 0 to let picker choose it.
 */
537
538
539
540
541
542
543
int32_t gemm_finalize(context& ctx,
                      const shape& output_shape,
                      const std::vector<shape>& input_shapes,
                      float alpha,
                      float beta,
                      bool compute_fp32,
                      int32_t solution_idx)
544
{
Paul's avatar
Paul committed
545
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
546
547
548
549
550

    // This code should be called only if either the environment var.
    // MIGRAPHX_ENABLE_GEMM_TUNING, or option --exhaustive-tune, is set

    if(solution_idx == 0)
551
    {
Paul's avatar
Format  
Paul committed
552
        auto gemm_item = gemm_impl<float>(output_shape, input_shapes, alpha, beta, compute_fp32);
553
554
        solution_idx = gemm_item.tune(ctx, input_shapes);
    }
555
    else
556
557
558
    {
        // If a tuned solution index is already given, don't tune again but validate
        // in case the data was tuned with a different rocBLAS version
Paul's avatar
Format  
Paul committed
559
        auto gemm_item = gemm_impl<float>(output_shape, input_shapes, alpha, beta, compute_fp32);
560
561
562
563
        solution_idx = gemm_item.validate(ctx, input_shapes, solution_idx);
    }
#else
    (void)ctx, (void)output_shape, (void)input_shapes;
Paul's avatar
Paul committed
564
    (void)alpha, (void)beta, (void)compute_fp32;
565
566
#endif
    return solution_idx;
567
568
}

569
570
/**
 * Decides if the tune() or validate() method is appropriate and calls it.
571
 * Return value is the chosen solution index, or 0 to let picker choose it.
572
 */
573
574
575
576
577
578
579
int32_t gemm_finalize(context& ctx,
                      const shape& output_shape,
                      const std::vector<shape>& input_shapes,
                      int32_t alpha,
                      int32_t beta,
                      bool compute_fp32,
                      int32_t solution_idx)
580
{
Paul's avatar
Paul committed
581
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
582

583
584
585
    // This code should be called only if either the environment var.
    // MIGRAPHX_ENABLE_GEMM_TUNING, or option --exhaustive-tune, is set
    if(solution_idx == 0)
586
    {
Paul's avatar
Format  
Paul committed
587
        auto gemm_item = gemm_impl<int32_t>(output_shape, input_shapes, alpha, beta, compute_fp32);
588
589
        solution_idx = gemm_item.tune(ctx, input_shapes);
    }
590
    else
591
592
593
    {
        // If a tuned solution index is already given, don't tune again but validate
        // in case the data was tuned with a different rocBLAS version
Paul's avatar
Format  
Paul committed
594
        auto gemm_item = gemm_impl<int32_t>(output_shape, input_shapes, alpha, beta, compute_fp32);
595
596
597
598
        solution_idx = gemm_item.validate(ctx, input_shapes, solution_idx);
    }
#else
    (void)ctx, (void)output_shape, (void)input_shapes;
Paul's avatar
Paul committed
599
    (void)alpha, (void)beta, (void)compute_fp32;
600
601
#endif
    return solution_idx;
Shucai Xiao's avatar
Shucai Xiao committed
602
603
604
605
606
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx