gemm_impl.cpp 23.4 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
28
29
30

/**
 * Contains a templated struct implementation that wraps several rocBLAS API calls
 * used by the GEMM operator.  These are accessed by methods declared in gemm_impl.hpp
 *
 */

31
#include <rocblas/rocblas.h>
32
#include <migraphx/gpu/gemm_impl.hpp>
33
34
35
36
#include <migraphx/time.hpp>

using microseconds = std::chrono::duration<double, std::micro>;

37
#if ROCBLAS_VERSION_MAJOR > 2 or (ROCBLAS_VERSION_MAJOR == 2 and ROCBLAS_VERSION_MINOR >= 38)
38
39
40
41
using flag_type = rocblas_gemm_flags;
#else
using flag_type = int;
#endif
Shucai Xiao's avatar
Shucai Xiao committed
42
43
44
45
46

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

47
// Convert rocBLAS datatypes to equivalent Migraphx data types
48
rocblas_datatype get_type(shape::type_t type)
Shucai Xiao's avatar
Shucai Xiao committed
49
{
50
    switch(type)
51
    {
52
53
54
55
56
57
58
    case shape::double_type: return rocblas_datatype_f64_r;
    case shape::float_type: return rocblas_datatype_f32_r;
    case shape::half_type: return rocblas_datatype_f16_r;
    case shape::int8_type: return rocblas_datatype_i8_r;
    case shape::uint8_type: return rocblas_datatype_u8_r;
    case shape::int32_type: return rocblas_datatype_i32_r;
    case shape::uint32_type: return rocblas_datatype_u32_r;
Paul Fultz II's avatar
Paul Fultz II committed
59
    case shape::tuple_type:
60
    case shape::bool_type:
61
62
63
64
    case shape::uint16_type:
    case shape::int16_type:
    case shape::int64_type:
    case shape::uint64_type: MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
65
    }
66
67

    MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
68
69
}

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
void blas_shape(const shape& s)
{
    if(s.lens().size() < 2)
        return;
    if(std::none_of(s.strides().end() - 2, s.strides().end(), [&](auto i) { return i == 1; }))
        MIGRAPHX_THROW("GPU_GEMM: needs to have one matrix stride as 1");
    if(s.lens().size() < 3)
        return;
    shape batch_shape{s.type(),
                      {s.lens().begin(), s.lens().end() - 2},
                      {s.strides().begin(), s.strides().end() - 2}};
    auto batch_shapes = reduce_dims({batch_shape});
    if(batch_shapes.front().lens().size() != 1)
        MIGRAPHX_THROW("GPU_GEMM: Batch dimension is not collapsible");
}

86
87
88
89
90
91
92
93
94
95
96
97
98
shape transpose_batch(const shape& s, unsigned trans_batch)
{
    if(trans_batch == 0)
        return s;
    if(s.lens().size() < 3)
        return s;
    auto batch = s.lens().size() - 3;
    std::vector<int64_t> perm(s.lens().size());
    std::iota(perm.begin(), perm.end(), 0);
    std::swap(perm[batch], perm[batch + trans_batch]);
    return shape::from_permutation(s.type(), s.lens(), perm);
}

99
100
101
102
103
104
105
106
/**
 * Returns results of rocblas_status_success, rocblas_status_perf_degraded,
 * or rocblas_status_invalid_value.  Caller
 * is expected to check for invalid index.  Any other result causes an exception.
 *
 */
template <class F, class Pack, class... Ts>
auto rocblas_invoke(F f, Pack p, Ts... xs)
107
{
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    return p([=](auto... ws) {
        auto status = f(ws..., xs...);
        if(status != rocblas_status_success and status != rocblas_status_invalid_value)
        {
            if(status == rocblas_status_perf_degraded)
            {
                std::cerr << "WARNING: degraded perf. in rocBLAS call" << std::endl;
            }
            else
                MIGRAPHX_THROW("rocblas_invoke: rocBLAS call failed with status " +
                               std::to_string(status));
        }
        return status;
    });
122
123
}

124
static bool is_transposed(const shape& s) { return s.transposed() and s.strides().back() != 1; }
125
126
127

static rocblas_int get_batch_stride(const argument& a)
{
128
129
130
131
132
    // This value is not needed for non-strided inputs
    if(a.get_shape().strides().size() < 3)
        return 0;
    else
        return a.get_shape().strides()[a.get_shape().strides().size() - 3];
133
134
}

135
136
137
138
139
/**
 * Wrapper for multiple rocBLAS calls.  The constructor creates parameters for
 * these calls based on data shapes and other values contained in the associated
 * instruction and operation.
 *
140
 * The template parameter T is not the type of the matrix data but of the weighting
141
142
143
144
 * coefficients alpha and beta (these are float in rocBLAS internals)
 */
template <typename T>
struct gemm_impl
Shucai Xiao's avatar
Shucai Xiao committed
145
{
146
147
148
149
150
151
152
153
154
155
    gemm_impl(const shape& output_shape,
              const std::vector<shape>& input_shapes,
              T alpha_param,
              T beta_param,
              bool int8_x4_format,
              bool compute_fp32_flag)
        : alpha(alpha_param),
          beta(beta_param),
          is_3inputs(input_shapes.size() == 4),
          compute_fp32(compute_fp32_flag)
156
    {
157
158
159
160
        if(not is_3inputs)
        {
            beta = 0;
        }
Paul's avatar
Format  
Paul committed
161
162
163
164
165
166
167

        // Create lambdas that will cast alpha, beta to the output shape's type
        // and retain the values being pointed to
        output_shape.visit_type([&](auto as) {
            auto alpha_r = as(alpha);
            auto beta_r  = as(beta);
            if(compute_fp32)
168
            {
Paul's avatar
Format  
Paul committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
                get_alpha = [=] { return &alpha; };
                get_beta  = [=] { return &beta; };
            }
            else
            {
                get_alpha = [=] { return &alpha_r; };
                get_beta  = [=] { return &beta_r; };
            }
        });

        transa     = is_transposed(input_shapes[0]);
        transb     = is_transposed(input_shapes[1]);
        auto n_dim = output_shape.lens().size();
        auto dim_0 = n_dim - 2;
        auto dim_1 = n_dim - 1;
        // Leading dimensions of matrices
        lda = input_shapes[0].strides()[transa ? dim_1 : dim_0];
        ldb = input_shapes[1].strides()[transb ? dim_1 : dim_0];
        ldc = input_shapes[2].strides()[dim_0];
        ldd = is_3inputs ? input_shapes[3].strides()[dim_0] : ldc;

        arg_type    = get_type(input_shapes[0].type());
        output_type = arg_type;
        if(output_type == rocblas_datatype_i8_r)
        {
            output_type = rocblas_datatype_i32_r;
Paul's avatar
Format  
Paul committed
195
        }
Paul's avatar
Paul committed
196
197
198
        compute_type = output_type;
        if(compute_fp32)
        {
Paul's avatar
Format  
Paul committed
199
200
            if(arg_type == rocblas_datatype_f16_r)
                compute_type = rocblas_datatype_f32_r;
Paul's avatar
Paul committed
201
        }
202

Paul's avatar
Paul committed
203
#if ROCBLAS_VERSION_MAJOR < 3
Paul's avatar
Paul committed
204
        int8_flag = int8_x4_format ? rocblas_gemm_flags_pack_int8x4 : rocblas_gemm_flags_none;
Paul's avatar
Paul committed
205
#endif
206

Paul's avatar
Paul committed
207
208
        auto a_lens = input_shapes[0].lens();
        auto b_lens = input_shapes[1].lens();
209

Paul's avatar
Paul committed
210
211
212
213
214
215
        auto out_lens = output_shape.lens();
        m             = out_lens[dim_0];
        n             = out_lens[dim_1];
        k             = input_shapes[0].lens()[dim_1];
        if(input_shapes[0].type() == shape::int8_type and (k % 4) != 0 and int8_x4_format)
        {
Paul's avatar
Format  
Paul committed
216
            MIGRAPHX_THROW("ROCBLAS_GEMM: k size of int8 type input must be multiple of 4!");
Paul's avatar
Paul committed
217
        }
Shucai Xiao's avatar
Shucai Xiao committed
218

Paul's avatar
Paul committed
219
220
221
222
        a_stride     = get_batch_stride(input_shapes[0]);
        b_stride     = get_batch_stride(input_shapes[1]);
        c_stride     = get_batch_stride(input_shapes[2]);
        d_stride     = is_3inputs ? get_batch_stride(input_shapes[3]) : c_stride;
Paul's avatar
Format  
Paul committed
223
224
        num_matrices = std::accumulate(
            out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
Paul's avatar
Paul committed
225
226
        if(num_matrices == 1 or (num_matrices > 1 and b_stride == 0))
        {
Paul's avatar
Format  
Paul committed
227
228
229
230
231
            // If the batch dimension of B is broadcasted, then we can
            // multiply m by the batch_size and use rocblas_gemm_ex
            // instead of rocblas_gemm_strided_batched_ex.
            m *= num_matrices;
            strided_batched = false;
Paul's avatar
Paul committed
232
        }
233
    }
234

235
236
237
238
239
240
241
    void run(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx = 0) const
    {
        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                           common_args,
242
                           rocblas_gemm_algo_standard,
243
244
                           solution_idx,
                           int8_flag);
Shucai Xiao's avatar
Shucai Xiao committed
245
246
247
        }
        else
        {
248
249
250
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(
                &rocblas_gemm_ex, common_args, rocblas_gemm_algo_standard, solution_idx, int8_flag);
Shucai Xiao's avatar
Shucai Xiao committed
251
        }
252
253
254
255
256
    }

#ifdef ROCBLAS_BETA_FEATURES_API
    auto validate(context& ctx, const std::vector<shape>& input_shapes, int32_t solution_idx) const
    {
257
        // Create dummy arguments for the shapes, and call the overloaded method
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        std::vector<argument> input_args;
        std::transform(input_shapes.begin(),
                       input_shapes.end(),
                       std::back_inserter(input_args),
                       [](const shape& x) { return to_gpu(generate_argument(x)); });

        return validate(ctx, input_args, solution_idx);
    }

    /**
     * Checks a particular solution for validity by running it with the flag
     * rocblas_gemm_flags_check_solution_index (could be invalid if this model was
     * tuned with a different rocBLAS version)
     *
     * @return Returns either solution_idx if valid, or else the default value 0
     * if not.  The default does not mean list index 0, but tells the picker
     * to choose a solution.
     */
    int32_t
    validate(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx) const
    {
        rocblas_status_ check_valid(rocblas_status_success);

        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            check_valid      = rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                                         common_args,
                                         rocblas_gemm_algo_solution_index,
                                         solution_idx,
                                         rocblas_gemm_flags_check_solution_index);
        }
        else
        {
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            check_valid      = rocblas_invoke(&rocblas_gemm_ex,
                                         common_args,
295
                                         rocblas_gemm_algo_solution_index,
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
                                         solution_idx,
                                         rocblas_gemm_flags_check_solution_index);
        }

        if(check_valid == rocblas_status_invalid_value)
        {
            std::cerr << "WARNING:  tuned solution is invalid; reverting to default" << std::endl;
            return 0;
        }
        return solution_idx;
    }
#endif

    /**
     * Helper method to create that subset of a long rocBLAS argument list that is common
     * to multiple "...strided_batched..." calls.
     *
     * The rocblas_gemm API handles inputs and output matrices as
     *  column-major format. When doing a C = A * B, we actually do
     *  C^T = (B^T) * (A^T). That is the reason we input args[1] as
     *   A and args[0] as B in calling the rocblas_gemm.
     *
     */
    auto create_strided_batched_args_common(context& ctx, const std::vector<argument>& args) const
    {
        return pack(ctx.get_stream().get_rocblas(),
                    transb ? rocblas_operation_transpose : rocblas_operation_none,
                    transa ? rocblas_operation_transpose : rocblas_operation_none,
                    n,
                    m,
                    k,
                    get_alpha(),
                    args[1].data(),
                    arg_type,
                    ldb,
                    b_stride,
                    args[0].data(),
                    arg_type,
                    lda,
                    a_stride,
                    get_beta(),
                    args[2].data(),
                    output_type,
                    ldc,
                    c_stride,
                    is_3inputs ? args[3].data() : args[2].data(),
                    output_type,
                    ldd,
                    d_stride,
                    num_matrices,
                    compute_type);
    }

    /**
     * Helper method to create that subset of a long rocBLAS argument list that is common
     * to multiple "gemm_ex..." calls.
     *
     * The rocblas_gemm API handles inputs and output matrices as
     *  column-major format. When doing a C = A * B, we actually do
     *   C^T = (B^T) * (A^T). That is the reason we input args[1] as
     *   A and args[0] as B in calling the rocblas_gemm.
     *
     * */
    auto create_gemm_ex_args_common(context& ctx, const std::vector<argument>& args) const
    {
        return pack(ctx.get_stream().get_rocblas(),
                    transb ? rocblas_operation_transpose : rocblas_operation_none,
                    transa ? rocblas_operation_transpose : rocblas_operation_none,
                    n,
                    m,
                    k,
                    get_alpha(),
                    args[1].data(),
                    arg_type,
                    ldb,
                    args[0].data(),
                    arg_type,
                    lda,
                    get_beta(),
                    args[2].data(),
                    output_type,
                    ldc,
                    is_3inputs ? args[3].data() : args[2].data(),
                    output_type,
                    ldd,
                    compute_type);
    }
#ifdef ROCBLAS_BETA_FEATURES_API
    /**
     * Find best rocBLAS solution:  Get list of solutions and try them all, returning the index
     * of the fastest one.
     */
    int tune(context& ctx, const std::vector<shape>& input_shapes) const
    {
        // tuning meta parameters
391
        const int hot_calls = 40;
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

        std::vector<argument> input_args;
        std::transform(input_shapes.begin(),
                       input_shapes.end(),
                       std::back_inserter(input_args),
                       [](const shape& x) { return to_gpu(generate_argument(x)); });

        // Get the solutions list in 2 rocBLAS steps:
        // 1.  Find out how many solutions there are and allocate the array
        // 2.  Get the solutions
        //
        rocblas_int list_size = 0;
        std::vector<rocblas_int> solution_indices;
        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex_get_solutions,
                           common_args,
                           rocblas_gemm_algo_solution_index,
                           int8_flag,
                           nullptr,
                           &list_size);
            solution_indices.resize(list_size);

            auto common_sol_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex_get_solutions,
                           common_sol_args,
                           rocblas_gemm_algo_solution_index,
                           int8_flag,
                           solution_indices.data(),
                           &list_size);
        }
        else
        {
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_ex_get_solutions,
                           common_args,
                           rocblas_gemm_algo_solution_index,
                           int8_flag,
                           nullptr,
                           &list_size);
            solution_indices.resize(list_size);

            auto common_sol_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_ex_get_solutions,
                           common_sol_args,
                           rocblas_gemm_algo_solution_index,
                           int8_flag,
                           solution_indices.data(),
                           &list_size);
        }

444
        double best_time  = std::numeric_limits<double>::max();
445
446
        double first_time = -1;
        // Initialize to default solution index
447
        rocblas_int best_sol = 0;
448
449
450
451
452
453
454
455
        for(auto sol : solution_indices)
        {
            // Define the function to be timed
            auto run_func = [&]() {
                run(ctx, input_args, sol);
                ctx.finish();
            };

456
457
458
            // Warmup: the first call to an op. may not be representative since there is
            // more time taken initializing caches, etc. so we won't time it.
            run_func();
459
460
461
462
463
464
465
466
467
468
469
470
            double host_time = 0.0;

            for(int hc = 0; hc < hot_calls; ++hc)
            {
                ctx.finish();
                host_time += time<microseconds>(run_func);
            }
            // todo:  Measured time dropped from 20 us to about 6.7 us when I raised hot_calls from
            // 1 to 11. The higher the hot_calls value, the faster per-call time up to at least 25,
            // and increasing cold_calls makes little or no difference.  Why?
            host_time /= hot_calls;

471
            // dev/evaluation only: track time for first solution.
472
473
474
475
            if(first_time < 0)
                first_time = host_time;

            // track current best
476
            if(host_time < best_time)
477
            {
478
479
                best_sol  = sol;
                best_time = host_time;
480
481
            }
        }
482
483
        std::cout << "Winning GEMM solution: " << best_sol << " in " << best_time << " us, beats "
                  << first_time << std::endl;
484
        return best_sol;
485
486
487
    }
#endif
    private:
Paul's avatar
Paul committed
488
    size_t num_matrices = 0;
Paul's avatar
Format  
Paul committed
489
490
491
492
493
494
495
    rocblas_int m       = 0;
    rocblas_int n       = 0;
    rocblas_int k       = 0;
    bool transa         = false;
    bool transb         = false;
    T alpha             = 0;
    T beta              = 0;
Paul's avatar
Paul committed
496
497
498

    std::function<const void*()> get_alpha{};
    std::function<const void*()> get_beta{};
Paul's avatar
Format  
Paul committed
499
500
501
502
503
504
505
506
507
    flag_type int8_flag           = 0;
    rocblas_int lda               = 0;
    rocblas_int ldb               = 0;
    rocblas_int ldc               = 0;
    rocblas_int ldd               = 0;
    rocblas_int a_stride          = 0;
    rocblas_int b_stride          = 0;
    rocblas_int c_stride          = 0;
    rocblas_int d_stride          = 0;
Paul's avatar
Paul committed
508
    rocblas_datatype compute_type = rocblas_datatype_f32_r;
Paul's avatar
Format  
Paul committed
509
510
511
512
513
    rocblas_datatype arg_type     = rocblas_datatype_f32_r;
    rocblas_datatype output_type  = rocblas_datatype_f32_r;
    bool strided_batched          = true;
    bool is_3inputs               = true;
    bool compute_fp32             = true;
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
}; // gemm_impl

void gemm_compute(context& ctx,
                  const shape& output_shape,
                  const std::vector<argument>& args,
                  float alpha,
                  float beta,
                  bool int8_x4_format,
                  bool compute_fp32,
                  int32_t solution_idx)
{
    std::vector<shape> input_shapes;
    std::transform(args.begin(),
                   args.end(),
                   std::back_inserter(input_shapes),
                   [](const argument& x) { return x.get_shape(); });
    auto gemm_item =
        gemm_impl<float>(output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
    gemm_item.run(ctx, args, solution_idx);
}

void gemm_compute(context& ctx,
                  const shape& output_shape,
                  const std::vector<argument>& args,
                  int32_t alpha,
                  int32_t beta,
                  bool int8_x4_format,
                  bool compute_fp32,
                  int32_t solution_idx)
{
    std::vector<shape> input_shapes;
    std::transform(args.begin(),
                   args.end(),
                   std::back_inserter(input_shapes),
                   [](const argument& x) { return x.get_shape(); });
    auto gemm_item =
        gemm_impl<int32_t>(output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
    gemm_item.run(ctx, args, solution_idx);
552
}
Shucai Xiao's avatar
Shucai Xiao committed
553

554
555
556
557
/**
 * Decides if the tune() or validate() method is appropriate and calls it.
 * Return value is the chosen solution index, or 0 to let picker choose it.
 */
558
559
560
561
562
563
564
565
int32_t gemm_finalize(context& ctx,
                      const shape& output_shape,
                      const std::vector<shape>& input_shapes,
                      float alpha,
                      float beta,
                      bool int8_x4_format,
                      bool compute_fp32,
                      int32_t solution_idx)
566
{
567
#ifdef ROCBLAS_BETA_FEATURES_API
568
569
570
571
572

    // This code should be called only if either the environment var.
    // MIGRAPHX_ENABLE_GEMM_TUNING, or option --exhaustive-tune, is set

    if(solution_idx == 0)
573
574
575
576
577
    {
        auto gemm_item =
            gemm_impl<float>(output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
        solution_idx = gemm_item.tune(ctx, input_shapes);
    }
578
    else
579
580
581
582
583
584
585
586
587
588
589
590
591
    {
        // If a tuned solution index is already given, don't tune again but validate
        // in case the data was tuned with a different rocBLAS version
        auto gemm_item =
            gemm_impl<float>(output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
        solution_idx = gemm_item.validate(ctx, input_shapes, solution_idx);
    }
#else
    // suppress compiler warnings
    (void)ctx, (void)output_shape, (void)input_shapes;
    (void)alpha, (void)beta, (void)int8_x4_format, (void)compute_fp32;
#endif
    return solution_idx;
592
593
}

594
595
/**
 * Decides if the tune() or validate() method is appropriate and calls it.
596
 * Return value is the chosen solution index, or 0 to let picker choose it.
597
 */
598
599
600
601
602
603
604
605
int32_t gemm_finalize(context& ctx,
                      const shape& output_shape,
                      const std::vector<shape>& input_shapes,
                      int32_t alpha,
                      int32_t beta,
                      bool int8_x4_format,
                      bool compute_fp32,
                      int32_t solution_idx)
606
{
607
608
#ifdef ROCBLAS_BETA_FEATURES_API

609
610
611
    // This code should be called only if either the environment var.
    // MIGRAPHX_ENABLE_GEMM_TUNING, or option --exhaustive-tune, is set
    if(solution_idx == 0)
612
613
614
615
616
    {
        auto gemm_item = gemm_impl<int32_t>(
            output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
        solution_idx = gemm_item.tune(ctx, input_shapes);
    }
617
    else
618
619
620
621
622
623
624
625
626
627
628
629
630
    {
        // If a tuned solution index is already given, don't tune again but validate
        // in case the data was tuned with a different rocBLAS version
        auto gemm_item = gemm_impl<int32_t>(
            output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
        solution_idx = gemm_item.validate(ctx, input_shapes, solution_idx);
    }
#else
    // suppress compiler warnings
    (void)ctx, (void)output_shape, (void)input_shapes;
    (void)alpha, (void)beta, (void)int8_x4_format, (void)compute_fp32;
#endif
    return solution_idx;
Shucai Xiao's avatar
Shucai Xiao committed
631
632
633
634
635
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx