gemm_impl.cpp 22.4 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
28
29
30

/**
 * Contains a templated struct implementation that wraps several rocBLAS API calls
 * used by the GEMM operator.  These are accessed by methods declared in gemm_impl.hpp
 *
 */

31
#include <rocblas/rocblas.h>
32
#include <migraphx/gpu/gemm_impl.hpp>
33
34
35
36
37
38
39
40
41
#include <migraphx/time.hpp>

using microseconds = std::chrono::duration<double, std::micro>;

#if ROCBLAS_VERSION_MAJOR > 2 || (ROCBLAS_VERSION_MAJOR == 2 && ROCBLAS_VERSION_MINOR >= 38)
using flag_type = rocblas_gemm_flags;
#else
using flag_type = int;
#endif
Shucai Xiao's avatar
Shucai Xiao committed
42
43
44
45
46

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

47
rocblas_datatype get_type(shape::type_t type)
Shucai Xiao's avatar
Shucai Xiao committed
48
{
49
    switch(type)
50
    {
51
52
53
54
55
56
57
    case shape::double_type: return rocblas_datatype_f64_r;
    case shape::float_type: return rocblas_datatype_f32_r;
    case shape::half_type: return rocblas_datatype_f16_r;
    case shape::int8_type: return rocblas_datatype_i8_r;
    case shape::uint8_type: return rocblas_datatype_u8_r;
    case shape::int32_type: return rocblas_datatype_i32_r;
    case shape::uint32_type: return rocblas_datatype_u32_r;
Paul Fultz II's avatar
Paul Fultz II committed
58
    case shape::tuple_type:
59
    case shape::bool_type:
60
61
62
63
    case shape::uint16_type:
    case shape::int16_type:
    case shape::int64_type:
    case shape::uint64_type: MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
64
    }
65
66

    MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
67
68
}

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
void blas_shape(const shape& s)
{
    if(s.lens().size() < 2)
        return;
    if(std::none_of(s.strides().end() - 2, s.strides().end(), [&](auto i) { return i == 1; }))
        MIGRAPHX_THROW("GPU_GEMM: needs to have one matrix stride as 1");
    if(s.lens().size() < 3)
        return;
    shape batch_shape{s.type(),
                      {s.lens().begin(), s.lens().end() - 2},
                      {s.strides().begin(), s.strides().end() - 2}};
    auto batch_shapes = reduce_dims({batch_shape});
    if(batch_shapes.front().lens().size() != 1)
        MIGRAPHX_THROW("GPU_GEMM: Batch dimension is not collapsible");
}

85
86
87
88
89
90
91
92
93
94
95
96
97
shape transpose_batch(const shape& s, unsigned trans_batch)
{
    if(trans_batch == 0)
        return s;
    if(s.lens().size() < 3)
        return s;
    auto batch = s.lens().size() - 3;
    std::vector<int64_t> perm(s.lens().size());
    std::iota(perm.begin(), perm.end(), 0);
    std::swap(perm[batch], perm[batch + trans_batch]);
    return shape::from_permutation(s.type(), s.lens(), perm);
}

98
99
100
101
102
103
104
105
/**
 * Returns results of rocblas_status_success, rocblas_status_perf_degraded,
 * or rocblas_status_invalid_value.  Caller
 * is expected to check for invalid index.  Any other result causes an exception.
 *
 */
template <class F, class Pack, class... Ts>
auto rocblas_invoke(F f, Pack p, Ts... xs)
106
{
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    return p([=](auto... ws) {
        auto status = f(ws..., xs...);
        if(status != rocblas_status_success and status != rocblas_status_invalid_value)
        {
            if(status == rocblas_status_perf_degraded)
            {
                std::cerr << "WARNING: degraded perf. in rocBLAS call" << std::endl;
            }
            else
                MIGRAPHX_THROW("rocblas_invoke: rocBLAS call failed with status " +
                               std::to_string(status));
        }
        return status;
    });
121
122
}

123
static bool is_transposed(const shape& s) { return s.transposed() and s.strides().back() != 1; }
124
125
126

static rocblas_int get_batch_stride(const argument& a)
{
127
128
129
130
131
    // This value is not needed for non-strided inputs
    if(a.get_shape().strides().size() < 3)
        return 0;
    else
        return a.get_shape().strides()[a.get_shape().strides().size() - 3];
132
133
}

134
135
136
137
138
139
140
141
142
143
/**
 * Wrapper for multiple rocBLAS calls.  The constructor creates parameters for
 * these calls based on data shapes and other values contained in the associated
 * instruction and operation.
 *
 * The template parameter T is not the type of the input data but of the weighting
 * coefficients alpha and beta (these are float in rocBLAS internals)
 */
template <typename T>
struct gemm_impl
Shucai Xiao's avatar
Shucai Xiao committed
144
{
145
146
147
148
149
150
151
152
153
154
    gemm_impl(const shape& output_shape,
              const std::vector<shape>& input_shapes,
              T alpha_param,
              T beta_param,
              bool int8_x4_format,
              bool compute_fp32_flag)
        : alpha(alpha_param),
          beta(beta_param),
          is_3inputs(input_shapes.size() == 4),
          compute_fp32(compute_fp32_flag)
155
    {
156
157
158
159
        if(not is_3inputs)
        {
            beta = 0;
        }
Shucai Xiao's avatar
Shucai Xiao committed
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        // Create lambdas that will cast alpha, beta to the output shape type
        // and retain the values being pointed to
        output_shape.visit_type([&](auto as) {
            auto alpha_r = as(alpha);
            auto beta_r  = as(beta);
            if(compute_fp32)
            {
                get_alpha = [=] { return &alpha; };
                get_beta  = [=] { return &beta; };
            }
            else
            {
                get_alpha = [=] { return &alpha_r; };
                get_beta  = [=] { return &beta_r; };
            }
        });
177

178
179
180
181
182
183
184
185
186
187
        transa     = is_transposed(input_shapes[0]);
        transb     = is_transposed(input_shapes[1]);
        auto n_dim = output_shape.lens().size();
        auto dim_0 = n_dim - 2;
        auto dim_1 = n_dim - 1;
        // Leading dimensions of matrices
        lda = input_shapes[0].strides()[transa ? dim_1 : dim_0];
        ldb = input_shapes[1].strides()[transb ? dim_1 : dim_0];
        ldc = input_shapes[2].strides()[dim_0];
        ldd = is_3inputs ? input_shapes[3].strides()[dim_0] : ldc;
188

189
190
191
192
193
194
195
        arg_type    = get_type(input_shapes[0].type());
        output_type = arg_type;
        if(output_type == rocblas_datatype_i8_r)
        {
            output_type = rocblas_datatype_i32_r;
        }
        compute_type = output_type;
196
197
        if(compute_fp32)
        {
198
199
            if(arg_type == rocblas_datatype_f16_r)
                compute_type = rocblas_datatype_f32_r;
200
201
        }

202
203
204
205
206
207
208
209
210
211
        int8_flag = int8_x4_format ? rocblas_gemm_flags_pack_int8x4 : rocblas_gemm_flags_none;

        auto a_lens = input_shapes[0].lens();
        auto b_lens = input_shapes[1].lens();

        auto out_lens = output_shape.lens();
        m             = out_lens[dim_0];
        n             = out_lens[dim_1];
        k             = input_shapes[0].lens()[dim_1];
        if(input_shapes[0].type() == shape::int8_type and (k % 4) != 0 and int8_x4_format)
212
        {
213
            MIGRAPHX_THROW("ROCBLAS_GEMM: k size of int8 type input must be multiple of 4!");
214
        }
Shucai Xiao's avatar
Shucai Xiao committed
215

216
217
218
219
220
        a_stride     = get_batch_stride(input_shapes[0]);
        b_stride     = get_batch_stride(input_shapes[1]);
        c_stride     = get_batch_stride(input_shapes[2]);
        d_stride     = is_3inputs ? get_batch_stride(input_shapes[3]) : c_stride;
        num_matrices = std::accumulate(
Shucai Xiao's avatar
Shucai Xiao committed
221
            out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
222
223

        if(num_matrices == 1 or (num_matrices > 1 and b_stride == 0))
Shucai Xiao's avatar
Shucai Xiao committed
224
        {
225
226
227
228
            // If the batch dimension of B is broadcasted, then we can
            // multiply m by the batch_size and use rocblas_gemm_ex
            // instead of rocblas_gemm_strided_batched_ex.
            m *= num_matrices;
229
230
231
            strided_batched = false;
        }
    }
232

233
234
235
236
237
238
239
    void run(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx = 0) const
    {
        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                           common_args,
240
                           rocblas_gemm_algo_standard,
241
242
                           solution_idx,
                           int8_flag);
Shucai Xiao's avatar
Shucai Xiao committed
243
244
245
        }
        else
        {
246
247
248
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(
                &rocblas_gemm_ex, common_args, rocblas_gemm_algo_standard, solution_idx, int8_flag);
Shucai Xiao's avatar
Shucai Xiao committed
249
        }
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    }

#ifdef ROCBLAS_BETA_FEATURES_API
    auto validate(context& ctx, const std::vector<shape>& input_shapes, int32_t solution_idx) const
    {
        std::vector<argument> input_args;
        std::transform(input_shapes.begin(),
                       input_shapes.end(),
                       std::back_inserter(input_args),
                       [](const shape& x) { return to_gpu(generate_argument(x)); });

        return validate(ctx, input_args, solution_idx);
    }

    /**
     * Checks a particular solution for validity by running it with the flag
     * rocblas_gemm_flags_check_solution_index (could be invalid if this model was
     * tuned with a different rocBLAS version)
     *
     * @return Returns either solution_idx if valid, or else the default value 0
     * if not.  The default does not mean list index 0, but tells the picker
     * to choose a solution.
     */
    int32_t
    validate(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx) const
    {
        rocblas_status_ check_valid(rocblas_status_success);

        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            check_valid      = rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                                         common_args,
                                         rocblas_gemm_algo_solution_index,
                                         solution_idx,
                                         rocblas_gemm_flags_check_solution_index);
        }
        else
        {
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            check_valid      = rocblas_invoke(&rocblas_gemm_ex,
                                         common_args,
                                         rocblas_gemm_algo_standard,
                                         solution_idx,
                                         rocblas_gemm_flags_check_solution_index);
        }

        if(check_valid == rocblas_status_invalid_value)
        {
            std::cerr << "WARNING:  tuned solution is invalid; reverting to default" << std::endl;
            return 0;
        }
        return solution_idx;
    }
#endif

    /**
     * Helper method to create that subset of a long rocBLAS argument list that is common
     * to multiple "...strided_batched..." calls.
     *
     * The rocblas_gemm API handles inputs and output matrices as
     *  column-major format. When doing a C = A * B, we actually do
     *  C^T = (B^T) * (A^T). That is the reason we input args[1] as
     *   A and args[0] as B in calling the rocblas_gemm.
     *
     */
    auto create_strided_batched_args_common(context& ctx, const std::vector<argument>& args) const
    {
        return pack(ctx.get_stream().get_rocblas(),
                    transb ? rocblas_operation_transpose : rocblas_operation_none,
                    transa ? rocblas_operation_transpose : rocblas_operation_none,
                    n,
                    m,
                    k,
                    get_alpha(),
                    args[1].data(),
                    arg_type,
                    ldb,
                    b_stride,
                    args[0].data(),
                    arg_type,
                    lda,
                    a_stride,
                    get_beta(),
                    args[2].data(),
                    output_type,
                    ldc,
                    c_stride,
                    is_3inputs ? args[3].data() : args[2].data(),
                    output_type,
                    ldd,
                    d_stride,
                    num_matrices,
                    compute_type);
    }

    /**
     * Helper method to create that subset of a long rocBLAS argument list that is common
     * to multiple "gemm_ex..." calls.
     *
     * The rocblas_gemm API handles inputs and output matrices as
     *  column-major format. When doing a C = A * B, we actually do
     *   C^T = (B^T) * (A^T). That is the reason we input args[1] as
     *   A and args[0] as B in calling the rocblas_gemm.
     *
     * */
    auto create_gemm_ex_args_common(context& ctx, const std::vector<argument>& args) const
    {
        return pack(ctx.get_stream().get_rocblas(),
                    transb ? rocblas_operation_transpose : rocblas_operation_none,
                    transa ? rocblas_operation_transpose : rocblas_operation_none,
                    n,
                    m,
                    k,
                    get_alpha(),
                    args[1].data(),
                    arg_type,
                    ldb,
                    args[0].data(),
                    arg_type,
                    lda,
                    get_beta(),
                    args[2].data(),
                    output_type,
                    ldc,
                    is_3inputs ? args[3].data() : args[2].data(),
                    output_type,
                    ldd,
                    compute_type);
    }
#ifdef ROCBLAS_BETA_FEATURES_API
    /**
     * Find best rocBLAS solution:  Get list of solutions and try them all, returning the index
     * of the fastest one.
     */
    int tune(context& ctx, const std::vector<shape>& input_shapes) const
    {
        // tuning meta parameters
        const int hot_calls  = 40;
        const int cold_calls = 1;

        std::vector<argument> input_args;
        std::transform(input_shapes.begin(),
                       input_shapes.end(),
                       std::back_inserter(input_args),
                       [](const shape& x) { return to_gpu(generate_argument(x)); });

        // Get the solutions list in 2 rocBLAS steps:
        // 1.  Find out how many solutions there are and allocate the array
        // 2.  Get the solutions
        //
        rocblas_int list_size = 0;
        std::vector<rocblas_int> solution_indices;
        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex_get_solutions,
                           common_args,
                           rocblas_gemm_algo_solution_index,
                           int8_flag,
                           nullptr,
                           &list_size);
            solution_indices.resize(list_size);

            auto common_sol_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex_get_solutions,
                           common_sol_args,
                           rocblas_gemm_algo_solution_index,
                           int8_flag,
                           solution_indices.data(),
                           &list_size);
        }
        else
        {
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_ex_get_solutions,
                           common_args,
                           rocblas_gemm_algo_solution_index,
                           int8_flag,
                           nullptr,
                           &list_size);
            solution_indices.resize(list_size);

            auto common_sol_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_ex_get_solutions,
                           common_sol_args,
                           rocblas_gemm_algo_solution_index,
                           int8_flag,
                           solution_indices.data(),
                           &list_size);
        }

        double bestTime   = std::numeric_limits<double>::max();
        double first_time = -1;
        // Initialize to default solution index
        rocblas_int bestSol = 0;
        for(auto sol : solution_indices)
        {
            // Define the function to be timed
            auto run_func = [&]() {
                run(ctx, input_args, sol);
                ctx.finish();
            };

            // Warmup: the first few calls to an op. may not be representative since there is
            // more time taken initializing caches, etc. so we won't time them.
            for(int cc = 0; cc < cold_calls; ++cc)
            {
                run_func();
            }
            double host_time = 0.0;

            for(int hc = 0; hc < hot_calls; ++hc)
            {
                ctx.finish();
                host_time += time<microseconds>(run_func);
            }
            // todo:  Measured time dropped from 20 us to about 6.7 us when I raised hot_calls from
            // 1 to 11. The higher the hot_calls value, the faster per-call time up to at least 25,
            // and increasing cold_calls makes little or no difference.  Why?
            host_time /= hot_calls;

            // debug only: track time for first solution.
            if(first_time < 0)
                first_time = host_time;

            // track current best
            if(host_time < bestTime)
            {
                std::cout << " current best index " << sol << ", time " << host_time << std::endl;
                bestSol  = sol;
                bestTime = host_time;
            }
        }
        std::cout << "Winner: " << bestSol << " in " << bestTime << " us, beats " << first_time
                  << std::endl;
        return bestSol;
    }
#endif
    private:
    size_t num_matrices;
    rocblas_int m, n, k;
    bool transa, transb;
    T alpha, beta;

    std::function<const void*()> get_alpha;
    std::function<const void*()> get_beta;
    flag_type int8_flag;
    rocblas_int lda, ldb, ldc, ldd;
    rocblas_int a_stride, b_stride, c_stride, d_stride;
    rocblas_datatype compute_type, arg_type, output_type;
    bool strided_batched = true, is_3inputs = true, compute_fp32 = true;
}; // gemm_impl

void gemm_compute(context& ctx,
                  const shape& output_shape,
                  const std::vector<argument>& args,
                  float alpha,
                  float beta,
                  bool int8_x4_format,
                  bool compute_fp32,
                  int32_t solution_idx)
{
    std::vector<shape> input_shapes;
    std::transform(args.begin(),
                   args.end(),
                   std::back_inserter(input_shapes),
                   [](const argument& x) { return x.get_shape(); });
    auto gemm_item =
        gemm_impl<float>(output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
    gemm_item.run(ctx, args, solution_idx);
}

void gemm_compute(context& ctx,
                  const shape& output_shape,
                  const std::vector<argument>& args,
                  int32_t alpha,
                  int32_t beta,
                  bool int8_x4_format,
                  bool compute_fp32,
                  int32_t solution_idx)
{
    std::vector<shape> input_shapes;
    std::transform(args.begin(),
                   args.end(),
                   std::back_inserter(input_shapes),
                   [](const argument& x) { return x.get_shape(); });
    auto gemm_item =
        gemm_impl<int32_t>(output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
    gemm_item.run(ctx, args, solution_idx);
540
}
Shucai Xiao's avatar
Shucai Xiao committed
541

542
543
544
545
546
547
548
549
int32_t gemm_finalize(context& ctx,
                      const shape& output_shape,
                      const std::vector<shape>& input_shapes,
                      float alpha,
                      float beta,
                      bool int8_x4_format,
                      bool compute_fp32,
                      int32_t solution_idx)
550
{
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
#ifdef ROCBLAS_BETA_FEATURES_API

    if(ctx.get_exhaustive_tune_flag() && solution_idx == 0)
    // if((true))
    {
        auto gemm_item =
            gemm_impl<float>(output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
        solution_idx = gemm_item.tune(ctx, input_shapes);
    }
    else if(solution_idx != 0)
    {
        // If a tuned solution index is already given, don't tune again but validate
        // in case the data was tuned with a different rocBLAS version
        auto gemm_item =
            gemm_impl<float>(output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
        solution_idx = gemm_item.validate(ctx, input_shapes, solution_idx);
    }
#else
    // suppress compiler warnings
    (void)ctx, (void)output_shape, (void)input_shapes;
    (void)alpha, (void)beta, (void)int8_x4_format, (void)compute_fp32;
#endif
    return solution_idx;
574
575
}

576
577
578
579
580
581
582
583
int32_t gemm_finalize(context& ctx,
                      const shape& output_shape,
                      const std::vector<shape>& input_shapes,
                      int32_t alpha,
                      int32_t beta,
                      bool int8_x4_format,
                      bool compute_fp32,
                      int32_t solution_idx)
584
{
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
#ifdef ROCBLAS_BETA_FEATURES_API

    if(ctx.get_exhaustive_tune_flag() && solution_idx == 0)
    {
        auto gemm_item = gemm_impl<int32_t>(
            output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
        solution_idx = gemm_item.tune(ctx, input_shapes);
    }
    else if(solution_idx != 0)
    {
        // If a tuned solution index is already given, don't tune again but validate
        // in case the data was tuned with a different rocBLAS version
        auto gemm_item = gemm_impl<int32_t>(
            output_shape, input_shapes, alpha, beta, int8_x4_format, compute_fp32);
        solution_idx = gemm_item.validate(ctx, input_shapes, solution_idx);
    }
#else
    // suppress compiler warnings
    (void)ctx, (void)output_shape, (void)input_shapes;
    (void)alpha, (void)beta, (void)int8_x4_format, (void)compute_fp32;
#endif
    return solution_idx;
Shucai Xiao's avatar
Shucai Xiao committed
607
608
609
610
611
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx