cpu_target.cpp 15.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5

#include <rtg/cpu/cpu_target.hpp>
#include <rtg/instruction.hpp>
#include <rtg/dfor.hpp>
#include <rtg/operators.hpp>
Paul's avatar
Paul committed
6
#include <rtg/shape_for_each.hpp>
Paul's avatar
Paul committed
7

Paul's avatar
Paul committed
8
9
namespace rtg {
namespace cpu {
Paul's avatar
Paul committed
10

11
template <typename T>
12
13
14
15
T zero(const T&)
{
    return T(0);
}
16

Paul's avatar
Paul committed
17
18
19
20
struct cpu_convolution
{
    convolution op;

Paul's avatar
Paul committed
21
22
    std::string name() const { return "cpu::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
23
    argument compute(shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
24
    {
Paul's avatar
Paul committed
25
        argument result{output_shape};
Paul's avatar
Paul committed
26
27
28
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];
Paul's avatar
Paul committed
29

Paul's avatar
Paul committed
30
31
32
            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];
Paul's avatar
Paul committed
33

Paul's avatar
Paul committed
34
35
36
37
            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
Paul's avatar
Paul committed
38
39
40
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
43
44
45
46
47
48
49
50
51
                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
Paul's avatar
Paul committed
52
53
54
55
56
57
                });
        });
        return result;
    }
};

Paul's avatar
Paul committed
58
59
60
struct max_pool
{
    static std::string name() { return "max"; }
Paul's avatar
Paul committed
61
    static double start() { return std::numeric_limits<double>::lowest(); }
Paul's avatar
Paul committed
62

Paul's avatar
Paul committed
63
64
65
66
67
    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }
Paul's avatar
Paul committed
68

Paul's avatar
Paul committed
69
    static double final(double x, double) { return (x); }
Paul's avatar
Paul committed
70
71
72
73
74
};

struct avg_pool
{
    static std::string name() { return "average"; }
Paul's avatar
Paul committed
75
    static double start() { return 0.0; }
Paul's avatar
Paul committed
76

Paul's avatar
Paul committed
77
    static double apply(double x, double y) { return x + y; }
Paul's avatar
Paul committed
78

Paul's avatar
Paul committed
79
    static double final(double x, double y) { return x / y; }
Paul's avatar
Paul committed
80
81
};

Paul's avatar
Paul committed
82
template <class Op>
Paul's avatar
Paul committed
83
84
85
86
87
88
89
90
91
92
93
struct cpu_pooling
{
    pooling op;

    std::string name() const { return "cpu::pooling_" + Op::name(); }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
Paul's avatar
Paul committed
94
95
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];
Paul's avatar
Paul committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

131
132
133
struct cpu_transpose
{
    transpose op;
Paul's avatar
Paul committed
134
135

    std::string name() const { return "cpu::transpose"; }
136
137
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
    argument compute(shape output_shape, std::vector<argument> args) const
138
139
140
141
142
143
144
145
146
    {
        return {output_shape, std::move(args.front().data)};
    }
};

struct cpu_contiguous
{
    contiguous op;
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
147
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
148
    argument compute(shape output_shape, std::vector<argument> args) const
149
150
151
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Paul's avatar
Paul committed
152
153
154
            shape_for_each(output.get_shape(), [&](const auto& idx) {
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end());
            });
155
        });
156
        return result;
157
    }
158
};
159

160
161
struct cpu_reshape
{
162
    reshape op;
163
    std::string name() const { return "cpu::reshape"; }
164
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
165

166
    argument compute(shape output_shape, std::vector<argument> args) const
167
168
169
170
171
    {
        return {output_shape, std::move(args.front().data)};
    }
};

172
173
174
175
struct cpu_gemm
{
    gemm op;
    std::string name() const { return "cpu::gemm"; }
176
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
177

178
    argument compute(shape output_shape, std::vector<argument> args) const
179
    {
180
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
181
182
183
184
185
186
187
188
        visit_all(result, args[0], args[1])([&](auto cmat, auto amat, auto bmat) {
            auto m = amat.get_shape().lens()[0];
            auto n = bmat.get_shape().lens()[1];
            auto k = bmat.get_shape().lens()[0];

            auto a = amat.data();
            auto b = bmat.data();
            auto c = cmat.data();
189
190
191
192
193
194
            for(int ii = 0; ii < m; ii++)
            {
                for(int jj = 0; jj < n; jj++)
                {
                    c[ii * n + jj] = 0;
                }
195
            }
196
197
198
199
200
201
202
203
204
205
206
            for(int ii = 0; ii < m; ii++)
            {
                for(int kk = 0; kk < k; kk++)
                {
                    auto aik  = a[ii * k + kk];
                    auto* bkj = &b[kk * n];
                    auto* cij = &c[ii * n];
                    for(int jj = 0; jj < n; jj++, cij++, bkj++)
                    {
                        *cij += aik * (*bkj);
                    }
207
208
209
                }
            }
        });
210
        return result;
211
212
213
    }
};

214
struct identity_op
Paul's avatar
Paul committed
215
{
216
217
218
219
220
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
221
};
Paul's avatar
Paul committed
222

223
struct abs_op
224
{
225
226
227
228
229
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
        return [](auto x) { return std::abs(x); };
    }
230
231
};

232
struct exp_op
233
{
234
235
236
237
238
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
239
240
};

241
struct sin_op
242
{
243
244
245
246
247
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
248
249
};

250
struct cos_op
251
{
252
253
254
255
256
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
257
258
};

259
struct tan_op
260
{
261
262
263
264
265
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
266
267
};

268
struct asin_op
269
{
270
271
272
273
274
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
275
276
};

277
struct acos_op
278
{
279
280
281
282
283
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
284
285
};

286
struct atan_op
287
{
288
289
290
291
292
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
293
294
295
296
};

struct tanh_op
{
297
298
299
300
301
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
302
303
304
305
};

struct sigmoid_op
{
306
307
308
309
310
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
311
312
313
314
};

struct neg_op
{
315
316
317
318
319
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
320
321
322
323
};

struct relu_op
{
324
325
326
327
328
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
        return [](auto x) { return x > 0 ? x : 0; };
    }
329
330
331
332
333
};

template <typename Op>
struct cpu_unary
{
334
335
336
337
338
339
340
341
342
343
344
345
346
    Op op;
    std::string name() const { return op.name(); }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
347
348
};

349
struct softmax2d
350
{
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    std::string name() const { return "cpu::softmax2d"; }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
385
386
387
388
389
};

struct add_op
{
    std::string name() const { return "add"; }
390
391
392
393
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
394
395
396
397
398
};

struct sub_op
{
    std::string name() const { return "sub"; }
399
400
401
402
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
403
404
405
406
407
};

struct mul_op
{
    std::string name() const { return "mul"; }
408
409
410
411
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
412
413
414
415
416
};

struct div_op
{
    std::string name() const { return "div"; }
417
418
419
420
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
421
422
423
424
425
};

template <typename Op>
struct cpu_binary
{
426
427
428
429
430
431
432
    Op op;
    std::string name() const { return op.name(); }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
Paul's avatar
Paul committed
433
434
435
436
437
438
439
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
Paul's avatar
Paul committed
440
                shape_for_each(output.get_shape(), [&](const auto& idx) {
Paul's avatar
Paul committed
441
442
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
Paul's avatar
Paul committed
443
444
                });
            }
445
446
447
        });
        return result;
    }
Paul's avatar
Paul committed
448
449
450
451
};

struct cpu_apply
{
Paul's avatar
Paul committed
452
    program* prog;
Paul's avatar
Paul committed
453
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};
Paul's avatar
Paul committed
454

Paul's avatar
Paul committed
455
    template <class T>
Paul's avatar
Paul committed
456
    auto simple_op()
Paul's avatar
Paul committed
457
    {
Paul's avatar
Paul committed
458
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
Paul's avatar
Paul committed
459
460
    }

Paul's avatar
Paul committed
461
    template <class T, class Op>
Paul's avatar
Paul committed
462
    auto extend_op()
Paul's avatar
Paul committed
463
    {
Paul's avatar
Paul committed
464
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
Paul's avatar
Paul committed
465
466
    }

Paul's avatar
Paul committed
467
    void init()
468
    {
Paul's avatar
Paul committed
469
        apply_map["convolution"] = extend_op<cpu_convolution, convolution>();
Paul's avatar
Paul committed
470
471
472
473
474
        apply_map["gemm"]        = extend_op<cpu_gemm, gemm>();
        apply_map["reshape"]     = extend_op<cpu_reshape, reshape>();
        apply_map["contiguous"]  = extend_op<cpu_contiguous, contiguous>();
        apply_map["transpose"]   = extend_op<cpu_transpose, transpose>();

Paul's avatar
Paul committed
475
        apply_map["identity"] = simple_op<cpu_unary<identity_op>>();
Paul's avatar
Paul committed
476
477
478
479
480
481
482
        apply_map["tanh"]     = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]  = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]      = simple_op<cpu_unary<exp_op>>();
        apply_map["neg"]      = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]      = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]      = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]      = simple_op<cpu_unary<tan_op>>();
Paul's avatar
Paul committed
483
        apply_map["add"]      = simple_op<cpu_binary<add_op>>();
Paul's avatar
Paul committed
484
485
486
        apply_map["sub"]      = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]      = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]      = simple_op<cpu_binary<div_op>>();
Paul's avatar
Paul committed
487
488

        apply_map["softmax"] = simple_op<softmax2d>();
489
    }
Paul's avatar
Paul committed
490
491
492

    void apply()
    {
Paul's avatar
Paul committed
493
        init();
Paul's avatar
Paul committed
494
495
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
Paul's avatar
Paul committed
496
            if(it->op.name() == "activation")
Paul's avatar
Paul committed
497
            {
Paul's avatar
Paul committed
498
499
                apply_activation(it);
            }
Paul's avatar
Paul committed
500
501
502
503
            else if(it->op.name() == "pooling")
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
504
            else if(apply_map.count(it->op.name()) > 0)
505
            {
Paul's avatar
Paul committed
506
                apply_map.at(it->op.name())(it);
507
            }
Paul's avatar
Paul committed
508
509
510
        }
    }

Paul's avatar
Paul committed
511
    template <class T>
Paul's avatar
Paul committed
512
    void apply_simple_op(instruction_ref ins)
Paul's avatar
Paul committed
513
    {
Paul's avatar
Paul committed
514
        prog->replace_instruction(ins, T{}, ins->arguments);
Paul's avatar
Paul committed
515
516
    }

Paul's avatar
Paul committed
517
    template <class T, class Op>
Paul's avatar
Paul committed
518
    void apply_extend_op(instruction_ref ins)
519
    {
Paul's avatar
Paul committed
520
521
        auto&& op = any_cast<Op>(ins->op);
        prog->replace_instruction(ins, T{op}, ins->arguments);
522
523
    }

Paul's avatar
Paul committed
524
525
526
527
    void apply_activation(instruction_ref ins)
    {
        auto&& op = any_cast<activation>(ins->op);
        if(op.mode == "relu")
528
            prog->replace_instruction(ins, cpu_unary<relu_op>{}, ins->arguments);
Paul's avatar
Paul committed
529
    }
530

Paul's avatar
Paul committed
531
    void apply_pooling(instruction_ref ins)
532
    {
Paul's avatar
Paul committed
533
534
535
536
537
        auto&& op = any_cast<pooling>(ins->op);
        if(op.mode == "max")
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->arguments);
        else if(op.mode == "average")
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->arguments);
538
    }
Paul's avatar
Paul committed
539
540
};

Paul's avatar
Paul committed
541
std::string cpu_target::name() const { return "cpu"; }
Paul's avatar
Paul committed
542

Paul's avatar
Paul committed
543
void cpu_target::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
544
545
546
547

} // namespace cpu

} // namespace rtg