"vscode:/vscode.git/clone" did not exist on "517913481b9be79f347bcc2a0344140d961456d5"
cpu_target.cpp 11.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <rtg/cpu/cpu_target.hpp>
#include <rtg/instruction.hpp>
#include <rtg/dfor.hpp>
#include <rtg/operators.hpp>

Paul's avatar
Paul committed
7
8
namespace rtg {
namespace cpu {
Paul's avatar
Paul committed
9

10
template <typename T>
Scott Thornton's avatar
Scott Thornton committed
11
T zero(const T&) { return T(0); }
12

Paul's avatar
Paul committed
13
14
15
16
struct cpu_convolution
{
    convolution op;

Paul's avatar
Paul committed
17
18
    std::string name() const { return "cpu::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
19
    argument compute(shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
20
    {
Paul's avatar
Paul committed
21
        argument result{output_shape};
Paul's avatar
Paul committed
22
23
24
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];
Paul's avatar
Paul committed
25

Paul's avatar
Paul committed
26
27
28
            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];
Paul's avatar
Paul committed
29

Paul's avatar
Paul committed
30
31
32
33
            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
Paul's avatar
Paul committed
34
35
36
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];
Paul's avatar
Paul committed
37

Paul's avatar
Paul committed
38
39
40
41
42
43
44
45
46
47
                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
Paul's avatar
Paul committed
48
49
50
51
52
53
                });
        });
        return result;
    }
};

54
55
56
57
struct cpu_gemm
{
    gemm op;
    std::string name() const { return "cpu::gemm"; }
58
    shape compute_shape(std::vector<shape> inputs) const
59
60
61
62
63
64
    {
        return op.compute_shape(inputs);
    }

    argument compute(shape output_shape, std::vector<argument> args) const 
    {
65
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
66
67
68
69
70
71
72
73
74
75
76
        visit_all(result, args[0], args[1])([&](auto cmat, auto amat, auto bmat) {
            auto m = amat.get_shape().lens()[0];
            auto n = bmat.get_shape().lens()[1];
            auto k = bmat.get_shape().lens()[0];

            auto a = amat.data();
            auto b = bmat.data();
            auto c = cmat.data();
            for (int ii = 0; ii < m; ii++) {
              for (int jj = 0; jj < n; jj++) {
                c[ii*n+jj] = 0;
77
78
              }
            }
Scott Thornton's avatar
Scott Thornton committed
79
80
81
82
83
84
            for (int ii = 0; ii < m; ii++) {
              for (int kk = 0; kk < k; kk++) {
                auto aik = a[ii*k+kk];
                auto* bkj = &b[kk*n];
                auto* cij = &c[ii*n];
                for (int jj = 0; jj < n; jj++, cij++, bkj++) {
85
86
87
88
89
                  *cij += aik*(*bkj);
                }
              }
            }
        });
90
        return result;
91
92
93
    }
};

94
struct identity_op
Paul's avatar
Paul committed
95
{
96
    std::string name() const {return "cpu::identity"; }
97
    auto fcn() const { return [](auto x) { return x; }; }
98
};
Paul's avatar
Paul committed
99

100
101
102
struct abs_op 
{
    std::string name() const {return "cpu::abs"; }
103
    auto fcn() const { return [](auto x) { return std::abs(x); }; }
104
105
106
107
108
};

struct exp_op 
{
    std::string name() const {return "cpu::exp"; }
109
    auto fcn() const { return [](auto x) { return std::exp(x); }; }
110
111
112
113
114
};

struct sin_op 
{
    std::string name() const {return "cpu::sin"; }
115
    auto fcn() const { return [](auto x) { return std::sin(x); }; }
116
117
118
119
120
};

struct cos_op 
{
    std::string name() const {return "cpu::cos"; }
121
    auto fcn() const { return [](auto x) { return std::cos(x); }; }
122
123
124
125
126
};

struct tan_op 
{
    std::string name() const {return "cpu::tan"; }
127
    auto fcn() const { return [](auto x) { return std::tan(x); }; }
128
129
130
131
132
};

struct asin_op 
{
    std::string name() const {return "cpu::asin"; }
133
    auto fcn() const { return [](auto x) { return std::asin(x); }; }
134
135
136
137
138
};

struct acos_op 
{
    std::string name() const {return "cpu::acos"; }
139
    auto fcn() const { return [](auto x) { return std::acos(x); }; }
140
141
142
143
144
};

struct atan_op 
{
    std::string name() const {return "cpu::atan"; }
145
    auto fcn() const { return [](auto x) { return std::atan(x); }; }
146
147
148
149
150
};

struct tanh_op
{
    std::string name() const {return "cpu::tanh"; }
151
    auto fcn() const { return [](auto x) { return std::tanh(x); }; }
152
153
154
155
156
};

struct sigmoid_op
{
    std::string name() const {return "cpu::sigmoid"; }
157
    auto fcn() const { return [](auto x) { return 1.f/(1.f + std::exp(-x)); }; }
158
159
160
161
162
};

struct neg_op
{
    std::string name() const {return "cpu::neg"; }
163
    auto fcn() const { return [](auto x) { return -x; }; }
164
165
166
167
168
169
170
171
172
173
174
175
};

struct relu_op
{
    std::string name() const {return "cpu::relu"; }
    auto fcn() const { return [](auto x) { return x > 0 ? x : 0; }; }
};

template <typename Op>
struct cpu_unary
{
  Op op;
176
  std::string name() const { return op.name(); }
177
178
179
180
181
182
183
184
185
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
      result.visit([&](auto output) {
          args[0].visit([&](auto input) {
              std::transform(input.begin(), input.end(), output.begin(), op.fcn());
          });
      });
186
187
188
189
      return result;
  }
};

190
struct softmax2d
191
{
192
  std::string name() const { return "cpu::softmax2d"; }
193
194
195
196
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
      visit_all(result, args[0])([&](auto output, auto input) {
          using value_type = typename decltype(input)::value_type;
          auto nb = input.get_shape().lens()[0];
          auto nc = input.get_shape().lens()[1]; 
          auto nh = input.get_shape().lens()[2]; 
          auto nw = input.get_shape().lens()[3];
          for (int b = 0; b < nb; b++) {
              for (int i = 0; i < nh; i++) {
                  for (int j = 0; j < nw; j++) {
                      value_type cmax = std::numeric_limits<value_type>::lowest();
                      for (int c = 0; c < nc; c++) {
                          cmax = std::max(cmax, input(b, c, i, j)); 
                      }
                      for (int c = 0; c < nc; c++) {
                          output(b, c, i, j) = std::exp(input(b, c, i, j)-cmax);
                      }
                      value_type sum = value_type(0);
                      for (int c = 0; c < nc; c++) {
                          sum += output(b, c, i, j);
                      }
                      for (int c = 0; c < nc; c++) {
                          output(b, c, i, j) = output(b, c, i, j)/sum;
                      }
                  }
              }
         } 
223
      });
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
      return result;
  }
};

struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const { return [](auto x, auto y) {return x + y;};}
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const { return [](auto x, auto y) {return x - y;};}
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const { return [](auto x, auto y) {return x * y;};}
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const { return [](auto x, auto y) {return x / y;};}
};

template <typename Op>
struct cpu_binary
{
  Op op;
  std::string name() const { op.name(); }
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
      visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
          std::transform(input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
          });
      return result;
  }
Paul's avatar
Paul committed
266
267
268
269
};

struct cpu_apply
{
Paul's avatar
Paul committed
270
    program* prog;
Paul's avatar
Paul committed
271
272
273

    void apply()
    {
Paul's avatar
Paul committed
274
275
276
277
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
            if(it->op.name() == "convolution")
            {
Paul's avatar
Paul committed
278
                apply_convolution(it);
Paul's avatar
Paul committed
279
280
281
            }
            else if(it->op.name() == "activation")
            {
Paul's avatar
Paul committed
282
283
                apply_activation(it);
            }
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
            else if(it->op.name() == "identity")
            {
                apply_identity(it);
            }
            else if(it->op.name() == "softmax")
            {
                apply_softmax(it);
            }
            else if(it->op.name() == "tanh")
            {
                apply_tanh(it);
            }
            else if(it->op.name() == "sigmoid")
            {
                apply_sigmoid(it);
            }
            else if(it->op.name() == "exp")
            {
                apply_exp(it);
            }
            else if(it->op.name() == "neg")
            {
                apply_neg(it);
            }
            else if(it->op.name() == "sin")
            {
                apply_sin(it);
            }
            else if(it->op.name() == "cos")
            {
                apply_cos(it);
            }
            else if(it->op.name() == "tan")
            {
                apply_tan(it);
            }
            else if(it->op.name() == "gemm")
            {
                apply_gemm(it);
            }
Paul's avatar
Paul committed
324
325
326
327
328
329
330
331
332
        }
    }

    void apply_convolution(instruction_ref ins)
    {
        auto&& op = any_cast<convolution>(ins->op);
        prog->replace_instruction(ins, cpu_convolution{op}, ins->arguments);
    }

333
334
335
336
337
338
    void apply_gemm(instruction_ref ins)
    {
        auto&& op = any_cast<gemm>(ins->op);
        prog->replace_instruction(ins, cpu_gemm{op}, ins->arguments);
    }

Paul's avatar
Paul committed
339
340
341
342
    void apply_activation(instruction_ref ins)
    {
        auto&& op = any_cast<activation>(ins->op);
        if(op.mode == "relu")
343
            prog->replace_instruction(ins, cpu_unary<relu_op>{}, ins->arguments);
Paul's avatar
Paul committed
344
    }
345
346
347
348
349
350
351
352

    void apply_identity(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<identity_op>{}, ins->arguments);
    }

    void apply_softmax(instruction_ref ins)
    {
353
        prog->replace_instruction(ins, softmax2d{}, ins->arguments);
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    }

    void apply_tanh(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<tanh_op>{}, ins->arguments);
    }

    void apply_sigmoid(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<sigmoid_op>{}, ins->arguments);
    }

    void apply_exp(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<exp_op>{}, ins->arguments);
    }

    void apply_neg(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<neg_op>{}, ins->arguments);
    }

    void apply_sin(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<sin_op>{}, ins->arguments);
    }

    void apply_cos(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<cos_op>{}, ins->arguments);
    }

    void apply_tan(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<tan_op>{}, ins->arguments);
    }
Paul's avatar
Paul committed
390
391
};

Paul's avatar
Paul committed
392
std::string cpu_target::name() const { return "cpu"; }
Paul's avatar
Paul committed
393

Paul's avatar
Paul committed
394
void cpu_target::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
395
396
397
398

} // namespace cpu

} // namespace rtg