cpu_target.cpp 14 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <rtg/cpu/cpu_target.hpp>
#include <rtg/instruction.hpp>
#include <rtg/dfor.hpp>
#include <rtg/operators.hpp>

Paul's avatar
Paul committed
7
8
namespace rtg {
namespace cpu {
Paul's avatar
Paul committed
9

10
template <typename T>
11
12
13
14
T zero(const T&)
{
    return T(0);
}
15

Paul's avatar
Paul committed
16
17
18
19
struct cpu_convolution
{
    convolution op;

Paul's avatar
Paul committed
20
21
    std::string name() const { return "cpu::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
22
    argument compute(shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
23
    {
Paul's avatar
Paul committed
24
        argument result{output_shape};
Paul's avatar
Paul committed
25
26
27
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];
Paul's avatar
Paul committed
28

Paul's avatar
Paul committed
29
30
31
            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];
Paul's avatar
Paul committed
32

Paul's avatar
Paul committed
33
34
35
36
            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
Paul's avatar
Paul committed
37
38
39
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
42
43
44
45
46
47
48
49
50
                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
Paul's avatar
Paul committed
51
52
53
54
55
56
                });
        });
        return result;
    }
};

57
58
59
struct cpu_transpose
{
    transpose op;
Paul's avatar
Paul committed
60
61

    std::string name() const { return "cpu::transpose"; }
62
63
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
    argument compute(shape output_shape, std::vector<argument> args) const
64
65
66
67
68
69
70
71
72
    {
        return {output_shape, std::move(args.front().data)};
    }
};

struct cpu_contiguous
{
    contiguous op;
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
73
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
74
    argument compute(shape output_shape, std::vector<argument> args) const
75
76
77
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
78
            auto input_shape = args[0].get_shape();
Paul's avatar
Paul committed
79
            auto ndim        = output_shape.lens().size();
80
            using value_type = typename decltype(input)::value_type;
Paul's avatar
Paul committed
81
82
83
84
85
            value_type* ptr  = static_cast<value_type*>(output.data());
            if(ndim == 2)
            {
                dfor(input_shape.lens()[0], input_shape.lens()[1])(
                    [&](std::size_t i0, std::size_t i1) { *ptr++ = input(i0, i1); });
86
            }
Paul's avatar
Paul committed
87
88
89
            else if(ndim == 3)
            {
                dfor(input_shape.lens()[0], input_shape.lens()[1], input_shape.lens()[2])(
90
                    [&](std::size_t i0, std::size_t i1, std::size_t i2) {
Paul's avatar
Paul committed
91
                        *ptr++ = input(i0, i1, i2);
92
93
                    });
            }
Paul's avatar
Paul committed
94
95
            else if(ndim == 4)
            {
96
97
98
99
100
                dfor(input_shape.lens()[0],
                     input_shape.lens()[1],
                     input_shape.lens()[2],
                     input_shape.lens()[3])(
                    [&](std::size_t i0, std::size_t i1, std::size_t i2, std::size_t i3) {
Paul's avatar
Paul committed
101
                        *ptr++ = input(i0, i1, i2, i3);
102
103
                    });
            }
Paul's avatar
Paul committed
104
105
            else if(ndim == 5)
            {
106
107
108
109
110
                dfor(input_shape.lens()[0],
                     input_shape.lens()[1],
                     input_shape.lens()[2],
                     input_shape.lens()[3],
                     input_shape.lens()[4])(
Paul's avatar
Paul committed
111
112
113
114
115
                    [&](std::size_t i0,
                        std::size_t i1,
                        std::size_t i2,
                        std::size_t i3,
                        std::size_t i4) { *ptr++ = input(i0, i1, i2, i3, i4); });
116
            }
Paul's avatar
Paul committed
117
118
            else if(ndim == 6)
            {
119
120
121
122
123
124
                dfor(input_shape.lens()[0],
                     input_shape.lens()[1],
                     input_shape.lens()[2],
                     input_shape.lens()[3],
                     input_shape.lens()[4],
                     input_shape.lens()[5])(
Paul's avatar
Paul committed
125
126
127
128
129
130
                    [&](std::size_t i0,
                        std::size_t i1,
                        std::size_t i2,
                        std::size_t i3,
                        std::size_t i4,
                        std::size_t i5) { *ptr++ = input(i0, i1, i2, i3, i4, i5); });
131
            }
132
        });
133
        return result;
134
    }
135
};
136

137
138
struct cpu_reshape
{
139
    reshape op;
140
    std::string name() const { return "cpu::reshape"; }
141
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
142

143
    argument compute(shape output_shape, std::vector<argument> args) const
144
145
146
147
148
    {
        return {output_shape, std::move(args.front().data)};
    }
};

149
150
151
152
struct cpu_gemm
{
    gemm op;
    std::string name() const { return "cpu::gemm"; }
153
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
154

155
    argument compute(shape output_shape, std::vector<argument> args) const
156
    {
157
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
158
159
160
161
162
163
164
165
        visit_all(result, args[0], args[1])([&](auto cmat, auto amat, auto bmat) {
            auto m = amat.get_shape().lens()[0];
            auto n = bmat.get_shape().lens()[1];
            auto k = bmat.get_shape().lens()[0];

            auto a = amat.data();
            auto b = bmat.data();
            auto c = cmat.data();
166
167
168
169
170
171
            for(int ii = 0; ii < m; ii++)
            {
                for(int jj = 0; jj < n; jj++)
                {
                    c[ii * n + jj] = 0;
                }
172
            }
173
174
175
176
177
178
179
180
181
182
183
            for(int ii = 0; ii < m; ii++)
            {
                for(int kk = 0; kk < k; kk++)
                {
                    auto aik  = a[ii * k + kk];
                    auto* bkj = &b[kk * n];
                    auto* cij = &c[ii * n];
                    for(int jj = 0; jj < n; jj++, cij++, bkj++)
                    {
                        *cij += aik * (*bkj);
                    }
184
185
186
                }
            }
        });
187
        return result;
188
189
190
    }
};

191
struct identity_op
Paul's avatar
Paul committed
192
{
193
194
195
196
197
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
198
};
Paul's avatar
Paul committed
199

200
struct abs_op
201
{
202
203
204
205
206
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
        return [](auto x) { return std::abs(x); };
    }
207
208
};

209
struct exp_op
210
{
211
212
213
214
215
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
216
217
};

218
struct sin_op
219
{
220
221
222
223
224
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
225
226
};

227
struct cos_op
228
{
229
230
231
232
233
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
234
235
};

236
struct tan_op
237
{
238
239
240
241
242
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
243
244
};

245
struct asin_op
246
{
247
248
249
250
251
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
252
253
};

254
struct acos_op
255
{
256
257
258
259
260
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
261
262
};

263
struct atan_op
264
{
265
266
267
268
269
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
270
271
272
273
};

struct tanh_op
{
274
275
276
277
278
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
279
280
281
282
};

struct sigmoid_op
{
283
284
285
286
287
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
288
289
290
291
};

struct neg_op
{
292
293
294
295
296
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
297
298
299
300
};

struct relu_op
{
301
302
303
304
305
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
        return [](auto x) { return x > 0 ? x : 0; };
    }
306
307
308
309
310
};

template <typename Op>
struct cpu_unary
{
311
312
313
314
315
316
317
318
319
320
321
322
323
    Op op;
    std::string name() const { return op.name(); }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
324
325
};

326
struct softmax2d
327
{
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    std::string name() const { return "cpu::softmax2d"; }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
362
363
364
365
366
};

struct add_op
{
    std::string name() const { return "add"; }
367
368
369
370
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
371
372
373
374
375
};

struct sub_op
{
    std::string name() const { return "sub"; }
376
377
378
379
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
380
381
382
383
384
};

struct mul_op
{
    std::string name() const { return "mul"; }
385
386
387
388
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
389
390
391
392
393
};

struct div_op
{
    std::string name() const { return "div"; }
394
395
396
397
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
398
399
400
401
402
};

template <typename Op>
struct cpu_binary
{
403
404
405
406
407
408
409
410
411
412
413
    Op op;
    std::string name() const { return op.name(); }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            std::transform(input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
        });
        return result;
    }
Paul's avatar
Paul committed
414
415
416
417
};

struct cpu_apply
{
Paul's avatar
Paul committed
418
    program* prog;
Paul's avatar
Paul committed
419
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};
Paul's avatar
Paul committed
420

Paul's avatar
Paul committed
421
    template <class T>
Paul's avatar
Paul committed
422
    auto simple_op()
Paul's avatar
Paul committed
423
    {
Paul's avatar
Paul committed
424
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
Paul's avatar
Paul committed
425
426
    }

Paul's avatar
Paul committed
427
    template <class T, class Op>
Paul's avatar
Paul committed
428
    auto extend_op()
Paul's avatar
Paul committed
429
    {
Paul's avatar
Paul committed
430
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
Paul's avatar
Paul committed
431
432
    }

Paul's avatar
Paul committed
433
    void init()
434
    {
Paul's avatar
Paul committed
435
        apply_map["convolution"] = extend_op<cpu_convolution, convolution>();
Paul's avatar
Paul committed
436
437
438
439
440
        apply_map["gemm"]        = extend_op<cpu_gemm, gemm>();
        apply_map["reshape"]     = extend_op<cpu_reshape, reshape>();
        apply_map["contiguous"]  = extend_op<cpu_contiguous, contiguous>();
        apply_map["transpose"]   = extend_op<cpu_transpose, transpose>();

Paul's avatar
Paul committed
441
        apply_map["identity"] = simple_op<cpu_unary<identity_op>>();
Paul's avatar
Paul committed
442
443
444
445
446
447
448
        apply_map["tanh"]     = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]  = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]      = simple_op<cpu_unary<exp_op>>();
        apply_map["neg"]      = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]      = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]      = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]      = simple_op<cpu_unary<tan_op>>();
Paul's avatar
Paul committed
449
450

        apply_map["softmax"] = simple_op<softmax2d>();
451
452
    }

Paul's avatar
Paul committed
453
    void apply()
454
    {
Paul's avatar
Paul committed
455
456
457
458
459
460
        init();
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
            if(it->op.name() == "activation")
            {
                apply_activation(it);
Paul's avatar
Paul committed
461
            }
Paul's avatar
Paul committed
462
463
464
465
466
            else if(apply_map.count(it->op.name()) > 0)
            {
                apply_map.at(it->op.name())(it);
            }
        }
467
468
    }

Paul's avatar
Paul committed
469
    template <class T>
Paul's avatar
Paul committed
470
    void apply_simple_op(instruction_ref ins)
471
    {
Paul's avatar
Paul committed
472
        prog->replace_instruction(ins, T{}, ins->arguments);
473
474
    }

Paul's avatar
Paul committed
475
    template <class T, class Op>
Paul's avatar
Paul committed
476
    void apply_extend_op(instruction_ref ins)
477
    {
Paul's avatar
Paul committed
478
479
        auto&& op = any_cast<Op>(ins->op);
        prog->replace_instruction(ins, T{op}, ins->arguments);
480
481
    }

Paul's avatar
Paul committed
482
483
484
485
    void apply_activation(instruction_ref ins)
    {
        auto&& op = any_cast<activation>(ins->op);
        if(op.mode == "relu")
486
            prog->replace_instruction(ins, cpu_unary<relu_op>{}, ins->arguments);
Paul's avatar
Paul committed
487
488
489
    }
};

Paul's avatar
Paul committed
490
std::string cpu_target::name() const { return "cpu"; }
Paul's avatar
Paul committed
491

Paul's avatar
Paul committed
492
void cpu_target::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
493
494
495
496

} // namespace cpu

} // namespace rtg