cpu_target.cpp 13.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <rtg/cpu/cpu_target.hpp>
#include <rtg/instruction.hpp>
#include <rtg/dfor.hpp>
#include <rtg/operators.hpp>

Paul's avatar
Paul committed
7
8
namespace rtg {
namespace cpu {
Paul's avatar
Paul committed
9

10
template <typename T>
11
12
13
14
T zero(const T&)
{
    return T(0);
}
15

Paul's avatar
Paul committed
16
17
18
19
struct cpu_convolution
{
    convolution op;

Paul's avatar
Paul committed
20
21
    std::string name() const { return "cpu::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
22
    argument compute(shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
23
    {
Paul's avatar
Paul committed
24
        argument result{output_shape};
Paul's avatar
Paul committed
25
26
27
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];
Paul's avatar
Paul committed
28

Paul's avatar
Paul committed
29
30
31
            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];
Paul's avatar
Paul committed
32

Paul's avatar
Paul committed
33
34
35
36
            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
Paul's avatar
Paul committed
37
38
39
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
42
43
44
45
46
47
48
49
50
                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
Paul's avatar
Paul committed
51
52
53
54
55
56
                });
        });
        return result;
    }
};

57
58
59
60
61
62
63
64
65
66
struct cpu_transpose
{
    transpose op;
   
    std::string name() const { return "cpu::transpose"; } 
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            using value_type = typename decltype(input)::value_type;
            value_type* ptr = static_cast<value_type*>(output.data());
            auto nb = output_shape.lens()[0];
            auto nc = output_shape.lens()[1]; 
            auto nh = output_shape.lens()[2]; 
            auto nw = output_shape.lens()[3];
            for (int kk = 0; kk < 4; kk++) {
                std::cout << "cpu_transpose: " << output_shape.lens()[kk] << "    " << output_shape.strides()[kk] << std::endl;
            }
            
            for (int b = 0; b < nb; b++) {
                for (int c = 0; c < nc; c++) {
                    for (int i = 0; i < nh; i++) {
                        for (int j = 0; j < nw; j++) {
                            *ptr++ = input(b,c,i,j);
                             std::cout << input(b,c,i,j) << "  ";
                        }
                    }
                }
            }
            std::cout << std::endl;
88
        });
89
        return result;
90
    }
91
};
92

93
94
struct cpu_reshape
{
95
    reshape op;
96
    std::string name() const { return "cpu::reshape"; }
97
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
98

99
    argument compute(shape output_shape, std::vector<argument> args) const
100
101
102
103
104
    {
        return {output_shape, std::move(args.front().data)};
    }
};

105
106
107
108
struct cpu_gemm
{
    gemm op;
    std::string name() const { return "cpu::gemm"; }
109
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
110

111
    argument compute(shape output_shape, std::vector<argument> args) const
112
    {
113
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
114
115
116
117
118
119
120
121
        visit_all(result, args[0], args[1])([&](auto cmat, auto amat, auto bmat) {
            auto m = amat.get_shape().lens()[0];
            auto n = bmat.get_shape().lens()[1];
            auto k = bmat.get_shape().lens()[0];

            auto a = amat.data();
            auto b = bmat.data();
            auto c = cmat.data();
122
123
124
125
126
127
            for(int ii = 0; ii < m; ii++)
            {
                for(int jj = 0; jj < n; jj++)
                {
                    c[ii * n + jj] = 0;
                }
128
            }
129
130
131
132
133
134
135
136
137
138
139
            for(int ii = 0; ii < m; ii++)
            {
                for(int kk = 0; kk < k; kk++)
                {
                    auto aik  = a[ii * k + kk];
                    auto* bkj = &b[kk * n];
                    auto* cij = &c[ii * n];
                    for(int jj = 0; jj < n; jj++, cij++, bkj++)
                    {
                        *cij += aik * (*bkj);
                    }
140
141
142
                }
            }
        });
143
        return result;
144
145
146
    }
};

147
struct identity_op
Paul's avatar
Paul committed
148
{
149
150
151
152
153
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
154
};
Paul's avatar
Paul committed
155

156
struct abs_op
157
{
158
159
160
161
162
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
        return [](auto x) { return std::abs(x); };
    }
163
164
};

165
struct exp_op
166
{
167
168
169
170
171
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
172
173
};

174
struct sin_op
175
{
176
177
178
179
180
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
181
182
};

183
struct cos_op
184
{
185
186
187
188
189
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
190
191
};

192
struct tan_op
193
{
194
195
196
197
198
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
199
200
};

201
struct asin_op
202
{
203
204
205
206
207
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
208
209
};

210
struct acos_op
211
{
212
213
214
215
216
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
217
218
};

219
struct atan_op
220
{
221
222
223
224
225
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
226
227
228
229
};

struct tanh_op
{
230
231
232
233
234
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
235
236
237
238
};

struct sigmoid_op
{
239
240
241
242
243
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
244
245
246
247
};

struct neg_op
{
248
249
250
251
252
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
253
254
255
256
};

struct relu_op
{
257
258
259
260
261
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
        return [](auto x) { return x > 0 ? x : 0; };
    }
262
263
264
265
266
};

template <typename Op>
struct cpu_unary
{
267
268
269
270
271
272
273
274
275
276
277
278
279
    Op op;
    std::string name() const { return op.name(); }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
280
281
};

282
struct softmax2d
283
{
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    std::string name() const { return "cpu::softmax2d"; }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
318
319
320
321
322
};

struct add_op
{
    std::string name() const { return "add"; }
323
324
325
326
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
327
328
329
330
331
};

struct sub_op
{
    std::string name() const { return "sub"; }
332
333
334
335
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
336
337
338
339
340
};

struct mul_op
{
    std::string name() const { return "mul"; }
341
342
343
344
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
345
346
347
348
349
};

struct div_op
{
    std::string name() const { return "div"; }
350
351
352
353
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
354
355
356
357
358
};

template <typename Op>
struct cpu_binary
{
359
360
361
362
363
364
365
366
367
368
369
    Op op;
    std::string name() const { return op.name(); }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            std::transform(input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
        });
        return result;
    }
Paul's avatar
Paul committed
370
371
372
373
};

struct cpu_apply
{
Paul's avatar
Paul committed
374
    program* prog;
Paul's avatar
Paul committed
375
376
377

    void apply()
    {
Paul's avatar
Paul committed
378
379
380
381
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
            if(it->op.name() == "convolution")
            {
Paul's avatar
Paul committed
382
                apply_convolution(it);
Paul's avatar
Paul committed
383
            }
384
385
386
387
388
389
390
391
            else if(it->op.name() == "gemm")
            {
                apply_gemm(it);
            }
            else if(it->op.name() == "reshape")
            {
                apply_reshape(it);
            }
392
393
394
395
            else if(it->op.name() == "transpose")
            {
                apply_transpose(it);
            }
Paul's avatar
Paul committed
396
397
            else if(it->op.name() == "activation")
            {
Paul's avatar
Paul committed
398
399
                apply_activation(it);
            }
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
            else if(it->op.name() == "identity")
            {
                apply_identity(it);
            }
            else if(it->op.name() == "softmax")
            {
                apply_softmax(it);
            }
            else if(it->op.name() == "tanh")
            {
                apply_tanh(it);
            }
            else if(it->op.name() == "sigmoid")
            {
                apply_sigmoid(it);
            }
            else if(it->op.name() == "exp")
            {
                apply_exp(it);
            }
            else if(it->op.name() == "neg")
            {
                apply_neg(it);
            }
            else if(it->op.name() == "sin")
            {
                apply_sin(it);
            }
            else if(it->op.name() == "cos")
            {
                apply_cos(it);
            }
            else if(it->op.name() == "tan")
            {
                apply_tan(it);
            }
Paul's avatar
Paul committed
436
437
438
439
440
441
442
443
444
        }
    }

    void apply_convolution(instruction_ref ins)
    {
        auto&& op = any_cast<convolution>(ins->op);
        prog->replace_instruction(ins, cpu_convolution{op}, ins->arguments);
    }

445
446
447
448
449
450
    void apply_gemm(instruction_ref ins)
    {
        auto&& op = any_cast<gemm>(ins->op);
        prog->replace_instruction(ins, cpu_gemm{op}, ins->arguments);
    }

451
452
453
454
455
456
    void apply_reshape(instruction_ref ins)
    {
        auto&& op = any_cast<reshape>(ins->op);
        prog->replace_instruction(ins, cpu_reshape{op}, ins->arguments);
    }

457
458
459
460
461
462
    void apply_transpose(instruction_ref ins)
    {
        auto&& op = any_cast<transpose>(ins->op);
        prog->replace_instruction(ins, cpu_transpose{op}, ins->arguments);
    }

Paul's avatar
Paul committed
463
464
465
466
    void apply_activation(instruction_ref ins)
    {
        auto&& op = any_cast<activation>(ins->op);
        if(op.mode == "relu")
467
            prog->replace_instruction(ins, cpu_unary<relu_op>{}, ins->arguments);
Paul's avatar
Paul committed
468
    }
469
470
471
472
473
474
475
476

    void apply_identity(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<identity_op>{}, ins->arguments);
    }

    void apply_softmax(instruction_ref ins)
    {
477
        prog->replace_instruction(ins, softmax2d{}, ins->arguments);
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    }

    void apply_tanh(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<tanh_op>{}, ins->arguments);
    }

    void apply_sigmoid(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<sigmoid_op>{}, ins->arguments);
    }

    void apply_exp(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<exp_op>{}, ins->arguments);
    }

    void apply_neg(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<neg_op>{}, ins->arguments);
    }

    void apply_sin(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<sin_op>{}, ins->arguments);
    }

    void apply_cos(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<cos_op>{}, ins->arguments);
    }

    void apply_tan(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<tan_op>{}, ins->arguments);
    }
Paul's avatar
Paul committed
514
515
};

Paul's avatar
Paul committed
516
std::string cpu_target::name() const { return "cpu"; }
Paul's avatar
Paul committed
517

Paul's avatar
Paul committed
518
void cpu_target::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
519
520
521
522

} // namespace cpu

} // namespace rtg