read_onnx.cpp 11.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
Paul's avatar
Paul committed
7
#include <unordered_map>
Paul's avatar
Paul committed
8
#include <functional>
Paul's avatar
Paul committed
9

Paul's avatar
Paul committed
10
#include <rtg/fallthrough.hpp>
Paul's avatar
Paul committed
11
#include <rtg/program.hpp>
Paul's avatar
Paul committed
12
#include <rtg/operators.hpp>
Paul's avatar
Paul committed
13
14
15
16

struct unknown
{
    std::string op;
Paul's avatar
Paul committed
17
    std::string name() const { return "unknown:" + op; }
Paul's avatar
Paul committed
18
19
    rtg::shape compute_shape(std::vector<rtg::shape> input) const
    {
Paul's avatar
Paul committed
20
21
22
23
        if(input.empty())
            return {};
        else
            return input.front();
Paul's avatar
Paul committed
24
    }
Paul's avatar
Paul committed
25
    rtg::argument compute(std::vector<rtg::argument>) const { RTG_THROW("not computable"); }
Paul's avatar
Paul committed
26
};
Paul's avatar
Paul committed
27

Paul's avatar
Paul committed
28
template <class C, class T>
Paul's avatar
Paul committed
29
30
31
32
33
bool contains(C&& c, T&& x)
{
    return c.find(x) != c.end();
}

Paul's avatar
Paul committed
34
template <class Range, class Iterator>
Paul's avatar
Paul committed
35
36
37
38
39
void copy(Range&& r, Iterator it)
{
    std::copy(r.begin(), r.end(), it);
}

Paul's avatar
Paul committed
40
struct onnx_parser
Paul's avatar
Paul committed
41
{
Paul's avatar
Paul committed
42
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
Paul's avatar
Paul committed
43
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
44
45
    using op_func =
        std::function<rtg::instruction_ref(attribute_map, std::vector<rtg::instruction_ref>)>;
Paul's avatar
Paul committed
46
    node_map nodes;
Paul's avatar
Paul committed
47
    std::unordered_map<std::string, rtg::instruction_ref> instructions;
Paul's avatar
Paul committed
48
    rtg::program prog = rtg::program();
Paul's avatar
Paul committed
49

Paul's avatar
Paul committed
50
    std::unordered_map<std::string, op_func> ops;
Paul's avatar
Paul committed
51
52
53

    onnx_parser()
    {
Paul's avatar
Paul committed
54
        add_op("Conv", [this](attribute_map attributes, std::vector<rtg::instruction_ref> args) {
Paul's avatar
Paul committed
55
56
57
58
59
60
61
62
63
64
65
66
67
            rtg::convolution op;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "dilations"))
            {
                copy(attributes["dilations"].ints(), op.dilation.begin());
            }
Paul's avatar
Paul committed
68
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
69
        });
Paul's avatar
Paul committed
70
        add_op("MaxPool", [this](attribute_map attributes, std::vector<rtg::instruction_ref> args) {
Paul's avatar
Paul committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
            rtg::pooling op{"max"};
            // for(auto&& p:attributes) std::cout << p.first << std::endl;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "kernel_shape"))
            {
                copy(attributes["kernel_shape"].ints(), op.lengths.begin());
            }
Paul's avatar
Paul committed
85
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
86
        });
Paul's avatar
Paul committed
87
        add_op("Relu", [this](attribute_map, std::vector<rtg::instruction_ref> args) {
Paul's avatar
Paul committed
88
            return prog.add_instruction(rtg::activation{"relu"}, args);
Paul's avatar
Paul committed
89
        });
Paul's avatar
Paul committed
90
        add_op("Reshape", [this](attribute_map attributes, std::vector<rtg::instruction_ref> args) {
Paul's avatar
Paul committed
91
92
            rtg::reshape op;
            rtg::literal s = parse_value(attributes.at("shape"));
Paul's avatar
Paul committed
93
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
94
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
95
        });
Paul's avatar
Paul committed
96
        add_op("Constant", [this](attribute_map attributes, std::vector<rtg::instruction_ref>) {
Paul's avatar
Paul committed
97
            rtg::literal v = parse_value(attributes.at("value"));
Paul's avatar
Paul committed
98
            return prog.add_literal(v);
Paul's avatar
Paul committed
99
100
101
        });
    }

Paul's avatar
Paul committed
102
    template <class F>
Paul's avatar
Paul committed
103
104
105
106
107
108
109
110
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
Paul's avatar
Paul committed
111
        if(model.ParseFromIstream(&is))
Paul's avatar
Paul committed
112
        {
Paul's avatar
Paul committed
113
            if(model.has_graph())
Paul's avatar
Paul committed
114
115
116
            {
                this->parse_graph(model.graph());
            }
Paul's avatar
Paul committed
117
118
        }
        else
Paul's avatar
Paul committed
119
120
121
122
123
        {
            throw std::runtime_error("Failed reading");
        }
    }

Paul's avatar
Paul committed
124
    void parse_graph(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
125
    {
Paul's avatar
Paul committed
126
        nodes = get_nodes(graph);
Paul's avatar
Paul committed
127
        for(auto&& input : graph.input())
Paul's avatar
Paul committed
128
        {
Paul's avatar
Paul committed
129
            const std::string& name = input.name();
Paul's avatar
Paul committed
130
            // TODO: Get shape of input parameter
Paul's avatar
Paul committed
131
            rtg::shape s       = parse_type(input.type());
Paul's avatar
Paul committed
132
            instructions[name] = prog.add_parameter(name, s);
Paul's avatar
Paul committed
133
        }
Paul's avatar
Paul committed
134
        for(auto&& p : nodes)
Paul's avatar
Paul committed
135
136
137
        {
            this->parse_node(p.second.name());
        }
Paul's avatar
Paul committed
138
139
    }

Paul's avatar
Paul committed
140
    void parse_node(std::string name)
Paul's avatar
Paul committed
141
    {
Paul's avatar
Paul committed
142
        if(instructions.count(name) == 0)
Paul's avatar
Paul committed
143
144
        {
            auto&& node = nodes.at(name);
Paul's avatar
Paul committed
145
            std::vector<rtg::instruction_ref> args;
Paul's avatar
Paul committed
146
            for(auto&& input : node.input())
Paul's avatar
Paul committed
147
148
149
150
151
152
153
154
155
156
157
158
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = nodes.at(input).name();
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
159
            if(ops.count(node.op_type()) == 0)
Paul's avatar
Paul committed
160
            {
Paul's avatar
Paul committed
161
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
Paul's avatar
Paul committed
162
163
164
165
166
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
Paul's avatar
Paul committed
167
        }
Paul's avatar
Paul committed
168
169
    }

Paul's avatar
Paul committed
170
    static attribute_map get_attributes(const onnx::NodeProto& node)
Paul's avatar
Paul committed
171
172
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
Paul's avatar
Paul committed
173
        for(auto&& attr : node.attribute())
Paul's avatar
Paul committed
174
        {
Paul's avatar
Paul committed
175
176
177
178
179
            result[attr.name()] = attr;
        }
        return result;
    }

Paul's avatar
Paul committed
180
    static node_map get_nodes(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
181
182
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
183
        for(auto&& node : graph.node())
Paul's avatar
Paul committed
184
185
        {
            result[node.name()] = node;
Paul's avatar
Paul committed
186
            for(auto&& output : node.output())
Paul's avatar
Paul committed
187
188
189
190
191
192
193
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
194
195
196
197
    static rtg::literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
Paul's avatar
Paul committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return rtg::literal{attr.f()};
        case onnx::AttributeProto::INT: return rtg::literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
        case onnx::AttributeProto::FLOATS:
            return rtg::literal{rtg::shape::float_type, attr.floats().begin(), attr.floats().end()};
        case onnx::AttributeProto::INTS:
            return rtg::literal{rtg::shape::int32_type, attr.ints().begin(), attr.ints().end()};
            ;
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
Paul's avatar
Paul committed
212
213
214
215
216
217
218
219
        }
    }

    static rtg::literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
        switch(t.data_type())
        {
Paul's avatar
Paul committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
            return rtg::literal{
                {rtg::shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::UINT16:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT16:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT32:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT64:
            return rtg::literal{
                {rtg::shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return rtg::literal{
                {rtg::shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
Paul's avatar
Paul committed
252
        }
Paul's avatar
Paul committed
253
    }
Paul's avatar
Paul committed
254
255
256

    static rtg::shape parse_type(const onnx::TypeProto& t)
    {
Paul's avatar
Paul committed
257
        rtg::shape::type_t shape_type{};
Paul's avatar
Paul committed
258
259
        switch(t.tensor_type().elem_type())
        {
Paul's avatar
Paul committed
260
261
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
Paul's avatar
Paul committed
262
        case onnx::TensorProto::FLOAT: shape_type = rtg::shape::float_type; break;
Paul's avatar
Paul committed
263
264
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
Paul's avatar
Paul committed
265
266
267
268
269
        case onnx::TensorProto::INT8: shape_type = rtg::shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = rtg::shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = rtg::shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = rtg::shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = rtg::shape::int64_type; break;
Paul's avatar
Paul committed
270
271
272
273
274
275
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
Paul's avatar
Paul committed
276
277
278
        case onnx::TensorProto::DOUBLE: shape_type = rtg::shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = rtg::shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = rtg::shape::uint64_type; break;
Paul's avatar
Paul committed
279
280
281
282
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
Paul's avatar
Paul committed
283
284
285
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
Paul's avatar
Paul committed
286
        for(auto&& d : t.tensor_type().shape().dim())
Paul's avatar
Paul committed
287
288
289
290
291
292
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};
Paul's avatar
Paul committed
293

Paul's avatar
Paul committed
294
int main(int argc, char const* argv[])
Paul's avatar
Paul committed
295
296
297
298
299
{
    if(argc > 1)
    {
        std::string file = argv[1];
        std::fstream input(file.c_str(), std::ios::in | std::ios::binary);
Paul's avatar
Paul committed
300
301
302
303
304
305
306
        onnx_parser parser;
        try
        {
            parser.parse_from(input);
        }
        catch(...)
        {
Paul's avatar
Paul committed
307
            std::cout << parser.prog << std::endl;
Paul's avatar
Paul committed
308
309
            throw;
        }
Paul's avatar
Paul committed
310
        std::cout << parser.prog << std::endl;
Paul's avatar
Paul committed
311
312
    }
}