read_onnx.cpp 11.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
Paul's avatar
Paul committed
7
#include <unordered_map>
Paul's avatar
Paul committed
8
#include <functional>
Paul's avatar
Paul committed
9

Paul's avatar
Paul committed
10
#include <rtg/fallthrough.hpp>
Paul's avatar
Paul committed
11
#include <rtg/program.hpp>
Paul's avatar
Paul committed
12
#include <rtg/operators.hpp>
Paul's avatar
Paul committed
13
14
15
16

struct unknown
{
    std::string op;
Paul's avatar
Paul committed
17
    std::string name() const { return "unknown:" + op; }
Paul's avatar
Paul committed
18
19
    rtg::shape compute_shape(std::vector<rtg::shape> input) const
    {
Paul's avatar
Paul committed
20
21
22
23
        if(input.empty())
            return {};
        else
            return input.front();
Paul's avatar
Paul committed
24
    }
Paul's avatar
Paul committed
25
    rtg::argument compute(std::vector<rtg::argument>) const { RTG_THROW("not computable"); }
Paul's avatar
Paul committed
26
};
Paul's avatar
Paul committed
27

Paul's avatar
Paul committed
28
template <class C, class T>
Paul's avatar
Paul committed
29
30
31
32
33
bool contains(C&& c, T&& x)
{
    return c.find(x) != c.end();
}

Paul's avatar
Paul committed
34
template <class Range, class Iterator>
Paul's avatar
Paul committed
35
36
37
38
39
void copy(Range&& r, Iterator it)
{
    std::copy(r.begin(), r.end(), it);
}

Paul's avatar
Paul committed
40
struct onnx_parser
Paul's avatar
Paul committed
41
{
Paul's avatar
Paul committed
42
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
Paul's avatar
Paul committed
43
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
44
    using op_func = std::function<rtg::instruction_ref(attribute_map, std::vector<rtg::instruction_ref>)>;
Paul's avatar
Paul committed
45
    node_map nodes;
Paul's avatar
Paul committed
46
    std::unordered_map<std::string, rtg::instruction_ref> instructions;
Paul's avatar
Paul committed
47
    rtg::program prog = rtg::program();
Paul's avatar
Paul committed
48

Paul's avatar
Paul committed
49
    std::unordered_map<std::string, op_func> ops;
Paul's avatar
Paul committed
50
51
52

    onnx_parser()
    {
Paul's avatar
Paul committed
53
        add_op("Conv", [this](attribute_map attributes, std::vector<rtg::instruction_ref> args) {
Paul's avatar
Paul committed
54
55
56
57
58
59
60
61
62
63
64
65
66
            rtg::convolution op;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "dilations"))
            {
                copy(attributes["dilations"].ints(), op.dilation.begin());
            }
Paul's avatar
Paul committed
67
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
68
        });
Paul's avatar
Paul committed
69
        add_op("MaxPool", [this](attribute_map attributes, std::vector<rtg::instruction_ref> args) {
Paul's avatar
Paul committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
            rtg::pooling op{"max"};
            // for(auto&& p:attributes) std::cout << p.first << std::endl;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "kernel_shape"))
            {
                copy(attributes["kernel_shape"].ints(), op.lengths.begin());
            }
Paul's avatar
Paul committed
84
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
85
        });
Paul's avatar
Paul committed
86
        add_op("Relu", [this](attribute_map, std::vector<rtg::instruction_ref> args) {
Paul's avatar
Paul committed
87
            return prog.add_instruction(rtg::activation{"relu"}, args);
Paul's avatar
Paul committed
88
        });
Paul's avatar
Paul committed
89
        add_op("Reshape", [this](attribute_map attributes, std::vector<rtg::instruction_ref> args) {
Paul's avatar
Paul committed
90
91
            rtg::reshape op;
            rtg::literal s = parse_value(attributes.at("shape"));
Paul's avatar
Paul committed
92
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
93
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
94
        });
Paul's avatar
Paul committed
95
        add_op("Constant", [this](attribute_map attributes, std::vector<rtg::instruction_ref>) {
Paul's avatar
Paul committed
96
            rtg::literal v = parse_value(attributes.at("value"));
Paul's avatar
Paul committed
97
            return prog.add_literal(v);
Paul's avatar
Paul committed
98
99
100
        });
    }

Paul's avatar
Paul committed
101
    template <class F>
Paul's avatar
Paul committed
102
103
104
105
106
107
108
109
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
Paul's avatar
Paul committed
110
        if(model.ParseFromIstream(&is))
Paul's avatar
Paul committed
111
        {
Paul's avatar
Paul committed
112
            if(model.has_graph())
Paul's avatar
Paul committed
113
114
115
            {
                this->parse_graph(model.graph());
            }
Paul's avatar
Paul committed
116
117
        }
        else
Paul's avatar
Paul committed
118
119
120
121
122
        {
            throw std::runtime_error("Failed reading");
        }
    }

Paul's avatar
Paul committed
123
    void parse_graph(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
124
    {
Paul's avatar
Paul committed
125
        nodes = get_nodes(graph);
Paul's avatar
Paul committed
126
        for(auto&& input : graph.input())
Paul's avatar
Paul committed
127
        {
Paul's avatar
Paul committed
128
            const std::string& name = input.name();
Paul's avatar
Paul committed
129
            // TODO: Get shape of input parameter
Paul's avatar
Paul committed
130
            rtg::shape s       = parse_type(input.type());
Paul's avatar
Paul committed
131
            instructions[name] = prog.add_parameter(name, s);
Paul's avatar
Paul committed
132
        }
Paul's avatar
Paul committed
133
        for(auto&& p : nodes)
Paul's avatar
Paul committed
134
135
136
        {
            this->parse_node(p.second.name());
        }
Paul's avatar
Paul committed
137
138
    }

Paul's avatar
Paul committed
139
    void parse_node(std::string name)
Paul's avatar
Paul committed
140
    {
Paul's avatar
Paul committed
141
        if(instructions.count(name) == 0)
Paul's avatar
Paul committed
142
143
        {
            auto&& node = nodes.at(name);
Paul's avatar
Paul committed
144
            std::vector<rtg::instruction_ref> args;
Paul's avatar
Paul committed
145
            for(auto&& input : node.input())
Paul's avatar
Paul committed
146
147
148
149
150
151
152
153
154
155
156
157
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = nodes.at(input).name();
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
158
            if(ops.count(node.op_type()) == 0)
Paul's avatar
Paul committed
159
            {
Paul's avatar
Paul committed
160
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
Paul's avatar
Paul committed
161
162
163
164
165
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
Paul's avatar
Paul committed
166
        }
Paul's avatar
Paul committed
167
168
    }

Paul's avatar
Paul committed
169
    static attribute_map get_attributes(const onnx::NodeProto& node)
Paul's avatar
Paul committed
170
171
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
Paul's avatar
Paul committed
172
        for(auto&& attr : node.attribute())
Paul's avatar
Paul committed
173
        {
Paul's avatar
Paul committed
174
175
176
177
178
            result[attr.name()] = attr;
        }
        return result;
    }

Paul's avatar
Paul committed
179
    static node_map get_nodes(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
180
181
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
182
        for(auto&& node : graph.node())
Paul's avatar
Paul committed
183
184
        {
            result[node.name()] = node;
Paul's avatar
Paul committed
185
            for(auto&& output : node.output())
Paul's avatar
Paul committed
186
187
188
189
190
191
192
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
193
194
195
196
    static rtg::literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
Paul's avatar
Paul committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return rtg::literal{attr.f()};
        case onnx::AttributeProto::INT: return rtg::literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
        case onnx::AttributeProto::FLOATS:
            return rtg::literal{rtg::shape::float_type, attr.floats().begin(), attr.floats().end()};
        case onnx::AttributeProto::INTS:
            return rtg::literal{rtg::shape::int32_type, attr.ints().begin(), attr.ints().end()};
            ;
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
Paul's avatar
Paul committed
211
212
213
214
215
216
217
218
        }
    }

    static rtg::literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
        switch(t.data_type())
        {
Paul's avatar
Paul committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
            return rtg::literal{
                {rtg::shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::UINT16:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT16:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT32:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT64:
            return rtg::literal{
                {rtg::shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return rtg::literal{
                {rtg::shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
Paul's avatar
Paul committed
251
        }
Paul's avatar
Paul committed
252
    }
Paul's avatar
Paul committed
253
254
255

    static rtg::shape parse_type(const onnx::TypeProto& t)
    {
Paul's avatar
Paul committed
256
        rtg::shape::type_t shape_type{};
Paul's avatar
Paul committed
257
258
        switch(t.tensor_type().elem_type())
        {
Paul's avatar
Paul committed
259
260
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
Paul's avatar
Paul committed
261
        case onnx::TensorProto::FLOAT: shape_type = rtg::shape::float_type; break;
Paul's avatar
Paul committed
262
263
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
Paul's avatar
Paul committed
264
265
266
267
268
        case onnx::TensorProto::INT8: shape_type = rtg::shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = rtg::shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = rtg::shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = rtg::shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = rtg::shape::int64_type; break;
Paul's avatar
Paul committed
269
270
271
272
273
274
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
Paul's avatar
Paul committed
275
276
277
        case onnx::TensorProto::DOUBLE: shape_type = rtg::shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = rtg::shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = rtg::shape::uint64_type; break;
Paul's avatar
Paul committed
278
279
280
281
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
Paul's avatar
Paul committed
282
283
284
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
Paul's avatar
Paul committed
285
        for(auto&& d : t.tensor_type().shape().dim())
Paul's avatar
Paul committed
286
287
288
289
290
291
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};
Paul's avatar
Paul committed
292

Paul's avatar
Paul committed
293
int main(int argc, char const* argv[])
Paul's avatar
Paul committed
294
295
296
297
298
{
    if(argc > 1)
    {
        std::string file = argv[1];
        std::fstream input(file.c_str(), std::ios::in | std::ios::binary);
Paul's avatar
Paul committed
299
300
301
302
303
304
305
        onnx_parser parser;
        try
        {
            parser.parse_from(input);
        }
        catch(...)
        {
Paul's avatar
Paul committed
306
            parser.prog.print();
Paul's avatar
Paul committed
307
308
            throw;
        }
Paul's avatar
Paul committed
309
        parser.prog.print();
Paul's avatar
Paul committed
310
311
    }
}