read_onnx.cpp 11.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
Paul's avatar
Paul committed
7
#include <unordered_map>
Paul's avatar
Paul committed
8
#include <functional>
Paul's avatar
Paul committed
9

Paul's avatar
Paul committed
10
#include <rtg/fallthrough.hpp>
Paul's avatar
Paul committed
11
#include <rtg/program.hpp>
Paul's avatar
Paul committed
12
#include <rtg/operators.hpp>
Paul's avatar
Paul committed
13
14
15
16

struct unknown
{
    std::string op;
Paul's avatar
Paul committed
17
    std::string name() const { return "unknown:" + op; }
Paul's avatar
Paul committed
18
19
    rtg::shape compute_shape(std::vector<rtg::shape> input) const
    {
Paul's avatar
Paul committed
20
21
22
23
        if(input.empty())
            return {};
        else
            return input.front();
Paul's avatar
Paul committed
24
    }
Paul's avatar
Paul committed
25
    rtg::argument compute(std::vector<rtg::argument>) const { RTG_THROW("not computable"); }
Paul's avatar
Paul committed
26
};
Paul's avatar
Paul committed
27

Paul's avatar
Paul committed
28
template <class C, class T>
Paul's avatar
Paul committed
29
30
31
32
33
bool contains(C&& c, T&& x)
{
    return c.find(x) != c.end();
}

Paul's avatar
Paul committed
34
template <class Range, class Iterator>
Paul's avatar
Paul committed
35
36
37
38
39
void copy(Range&& r, Iterator it)
{
    std::copy(r.begin(), r.end(), it);
}

Paul's avatar
Paul committed
40
struct onnx_parser
Paul's avatar
Paul committed
41
{
Paul's avatar
Paul committed
42
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
Paul's avatar
Paul committed
43
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
44
    using op_func = std::function<rtg::instruction*(attribute_map, std::vector<rtg::instruction*>)>;
Paul's avatar
Paul committed
45
    node_map nodes;
Paul's avatar
Paul committed
46
    std::unordered_map<std::string, rtg::instruction*> instructions;
Paul's avatar
Paul committed
47
    rtg::program prog = rtg::program();
Paul's avatar
Paul committed
48

Paul's avatar
Paul committed
49
50
    std::unordered_map<
        std::string,
Paul's avatar
Paul committed
51
        op_func>
Paul's avatar
Paul committed
52
        ops;
Paul's avatar
Paul committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

    onnx_parser()
    {
        add_op("Conv", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::convolution op;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "dilations"))
            {
                copy(attributes["dilations"].ints(), op.dilation.begin());
            }
Paul's avatar
Paul committed
70
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        });
        add_op("MaxPool", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::pooling op{"max"};
            // for(auto&& p:attributes) std::cout << p.first << std::endl;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "kernel_shape"))
            {
                copy(attributes["kernel_shape"].ints(), op.lengths.begin());
            }
Paul's avatar
Paul committed
87
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
88
        });
Paul's avatar
Paul committed
89
        add_op("Relu", [this](attribute_map, std::vector<rtg::instruction*> args) {
Paul's avatar
Paul committed
90
            return prog.add_instruction(rtg::activation{"relu"}, args);
Paul's avatar
Paul committed
91
        });
Paul's avatar
Paul committed
92
93
94
        add_op("Reshape", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::reshape op;
            rtg::literal s = parse_value(attributes.at("shape"));
Paul's avatar
Paul committed
95
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
96
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
97
        });
Paul's avatar
Paul committed
98
99
        add_op("Constant", [this](attribute_map attributes, std::vector<rtg::instruction*>) {
            rtg::literal v = parse_value(attributes.at("value"));
Paul's avatar
Paul committed
100
            return prog.add_literal(v);
Paul's avatar
Paul committed
101
102
103
        });
    }

Paul's avatar
Paul committed
104
    template <class F>
Paul's avatar
Paul committed
105
106
107
108
109
110
111
112
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
Paul's avatar
Paul committed
113
        if(model.ParseFromIstream(&is))
Paul's avatar
Paul committed
114
        {
Paul's avatar
Paul committed
115
            if(model.has_graph())
Paul's avatar
Paul committed
116
117
118
            {
                this->parse_graph(model.graph());
            }
Paul's avatar
Paul committed
119
120
        }
        else
Paul's avatar
Paul committed
121
122
123
124
125
        {
            throw std::runtime_error("Failed reading");
        }
    }

Paul's avatar
Paul committed
126
    void parse_graph(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
127
    {
Paul's avatar
Paul committed
128
        nodes = get_nodes(graph);
Paul's avatar
Paul committed
129
        for(auto&& input : graph.input())
Paul's avatar
Paul committed
130
        {
Paul's avatar
Paul committed
131
            const std::string& name = input.name();
Paul's avatar
Paul committed
132
            // TODO: Get shape of input parameter
Paul's avatar
Paul committed
133
            rtg::shape s       = parse_type(input.type());
Paul's avatar
Paul committed
134
            instructions[name] = prog.add_parameter(name, s);
Paul's avatar
Paul committed
135
        }
Paul's avatar
Paul committed
136
        for(auto&& p : nodes)
Paul's avatar
Paul committed
137
138
139
        {
            this->parse_node(p.second.name());
        }
Paul's avatar
Paul committed
140
141
    }

Paul's avatar
Paul committed
142
    void parse_node(std::string name)
Paul's avatar
Paul committed
143
    {
Paul's avatar
Paul committed
144
        if(instructions.count(name) == 0)
Paul's avatar
Paul committed
145
146
147
        {
            auto&& node = nodes.at(name);
            std::vector<rtg::instruction*> args;
Paul's avatar
Paul committed
148
            for(auto&& input : node.input())
Paul's avatar
Paul committed
149
150
151
152
153
154
155
156
157
158
159
160
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = nodes.at(input).name();
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
161
            if(ops.count(node.op_type()) == 0)
Paul's avatar
Paul committed
162
            {
Paul's avatar
Paul committed
163
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
Paul's avatar
Paul committed
164
165
166
167
168
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
Paul's avatar
Paul committed
169
        }
Paul's avatar
Paul committed
170
171
    }

Paul's avatar
Paul committed
172
    static attribute_map get_attributes(const onnx::NodeProto& node)
Paul's avatar
Paul committed
173
174
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
Paul's avatar
Paul committed
175
        for(auto&& attr : node.attribute())
Paul's avatar
Paul committed
176
        {
Paul's avatar
Paul committed
177
178
179
180
181
            result[attr.name()] = attr;
        }
        return result;
    }

Paul's avatar
Paul committed
182
    static node_map get_nodes(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
183
184
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
185
        for(auto&& node : graph.node())
Paul's avatar
Paul committed
186
187
        {
            result[node.name()] = node;
Paul's avatar
Paul committed
188
            for(auto&& output : node.output())
Paul's avatar
Paul committed
189
190
191
192
193
194
195
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
196
197
198
199
    static rtg::literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
Paul's avatar
Paul committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return rtg::literal{attr.f()};
        case onnx::AttributeProto::INT: return rtg::literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
        case onnx::AttributeProto::FLOATS:
            return rtg::literal{rtg::shape::float_type, attr.floats().begin(), attr.floats().end()};
        case onnx::AttributeProto::INTS:
            return rtg::literal{rtg::shape::int32_type, attr.ints().begin(), attr.ints().end()};
            ;
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
Paul's avatar
Paul committed
214
215
216
217
218
219
220
221
        }
    }

    static rtg::literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
        switch(t.data_type())
        {
Paul's avatar
Paul committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
            return rtg::literal{
                {rtg::shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::UINT16:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT16:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT32:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT64:
            return rtg::literal{
                {rtg::shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return rtg::literal{
                {rtg::shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
Paul's avatar
Paul committed
254
        }
Paul's avatar
Paul committed
255
    }
Paul's avatar
Paul committed
256
257
258

    static rtg::shape parse_type(const onnx::TypeProto& t)
    {
Paul's avatar
Paul committed
259
        rtg::shape::type_t shape_type{};
Paul's avatar
Paul committed
260
261
        switch(t.tensor_type().elem_type())
        {
Paul's avatar
Paul committed
262
263
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
Paul's avatar
Paul committed
264
        case onnx::TensorProto::FLOAT: shape_type = rtg::shape::float_type; break;
Paul's avatar
Paul committed
265
266
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
Paul's avatar
Paul committed
267
268
269
270
271
        case onnx::TensorProto::INT8: shape_type = rtg::shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = rtg::shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = rtg::shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = rtg::shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = rtg::shape::int64_type; break;
Paul's avatar
Paul committed
272
273
274
275
276
277
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
Paul's avatar
Paul committed
278
279
280
        case onnx::TensorProto::DOUBLE: shape_type = rtg::shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = rtg::shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = rtg::shape::uint64_type; break;
Paul's avatar
Paul committed
281
282
283
284
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
Paul's avatar
Paul committed
285
286
287
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
Paul's avatar
Paul committed
288
        for(auto&& d : t.tensor_type().shape().dim())
Paul's avatar
Paul committed
289
290
291
292
293
294
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};
Paul's avatar
Paul committed
295

Paul's avatar
Paul committed
296
int main(int argc, char const* argv[])
Paul's avatar
Paul committed
297
298
299
300
301
{
    if(argc > 1)
    {
        std::string file = argv[1];
        std::fstream input(file.c_str(), std::ios::in | std::ios::binary);
Paul's avatar
Paul committed
302
303
304
305
306
307
308
        onnx_parser parser;
        try
        {
            parser.parse_from(input);
        }
        catch(...)
        {
Paul's avatar
Paul committed
309
            parser.prog.print();
Paul's avatar
Paul committed
310
311
            throw;
        }
Paul's avatar
Paul committed
312
        parser.prog.print();
Paul's avatar
Paul committed
313
314
    }
}