read_onnx.cpp 11.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
Paul's avatar
Paul committed
7
#include <unordered_map>
Paul's avatar
Paul committed
8
#include <functional>
Paul's avatar
Paul committed
9

Paul's avatar
Paul committed
10
#include <rtg/fallthrough.hpp>
Paul's avatar
Paul committed
11
#include <rtg/program.hpp>
Paul's avatar
Paul committed
12
#include <rtg/operators.hpp>
Paul's avatar
Paul committed
13
14
15
16

struct unknown
{
    std::string op;
Paul's avatar
Paul committed
17
    std::string name() const { return "unknown:" + op; }
Paul's avatar
Paul committed
18
19
    rtg::shape compute_shape(std::vector<rtg::shape> input) const
    {
Paul's avatar
Paul committed
20
21
22
23
        if(input.empty())
            return {};
        else
            return input.front();
Paul's avatar
Paul committed
24
    }
Paul's avatar
Paul committed
25
    rtg::argument compute(std::vector<rtg::argument>) const { RTG_THROW("not computable"); }
Paul's avatar
Paul committed
26
};
Paul's avatar
Paul committed
27

Paul's avatar
Paul committed
28
template <class C, class T>
Paul's avatar
Paul committed
29
30
31
32
33
bool contains(C&& c, T&& x)
{
    return c.find(x) != c.end();
}

Paul's avatar
Paul committed
34
template <class Range, class Iterator>
Paul's avatar
Paul committed
35
36
37
38
39
void copy(Range&& r, Iterator it)
{
    std::copy(r.begin(), r.end(), it);
}

Paul's avatar
Paul committed
40
struct onnx_parser
Paul's avatar
Paul committed
41
{
Paul's avatar
Paul committed
42
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
Paul's avatar
Paul committed
43
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
44
    node_map nodes;
Paul's avatar
Paul committed
45
    std::unordered_map<std::string, rtg::instruction*> instructions;
Paul's avatar
Paul committed
46
    rtg::program prog = std::make_shared<rtg::program>();
Paul's avatar
Paul committed
47

Paul's avatar
Paul committed
48
49
50
51
    std::unordered_map<
        std::string,
        std::function<rtg::instruction*(attribute_map, std::vector<rtg::instruction*>)>>
        ops;
Paul's avatar
Paul committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

    onnx_parser()
    {
        add_op("Conv", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::convolution op;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "dilations"))
            {
                copy(attributes["dilations"].ints(), op.dilation.begin());
            }
Paul's avatar
Paul committed
69
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        });
        add_op("MaxPool", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::pooling op{"max"};
            // for(auto&& p:attributes) std::cout << p.first << std::endl;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "kernel_shape"))
            {
                copy(attributes["kernel_shape"].ints(), op.lengths.begin());
            }
Paul's avatar
Paul committed
86
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
87
        });
Paul's avatar
Paul committed
88
        add_op("Relu", [this](attribute_map, std::vector<rtg::instruction*> args) {
Paul's avatar
Paul committed
89
            return prog.add_instruction(rtg::activation{"relu"}, args);
Paul's avatar
Paul committed
90
        });
Paul's avatar
Paul committed
91
92
93
        add_op("Reshape", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::reshape op;
            rtg::literal s = parse_value(attributes.at("shape"));
Paul's avatar
Paul committed
94
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
95
            return prog.add_instruction(op, args);
Paul's avatar
Paul committed
96
        });
Paul's avatar
Paul committed
97
98
        add_op("Constant", [this](attribute_map attributes, std::vector<rtg::instruction*>) {
            rtg::literal v = parse_value(attributes.at("value"));
Paul's avatar
Paul committed
99
            return prog.add_literal(v);
Paul's avatar
Paul committed
100
101
102
        });
    }

Paul's avatar
Paul committed
103
    template <class F>
Paul's avatar
Paul committed
104
105
106
107
108
109
110
111
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
Paul's avatar
Paul committed
112
        if(model.ParseFromIstream(&is))
Paul's avatar
Paul committed
113
        {
Paul's avatar
Paul committed
114
            if(model.has_graph())
Paul's avatar
Paul committed
115
116
117
            {
                this->parse_graph(model.graph());
            }
Paul's avatar
Paul committed
118
119
        }
        else
Paul's avatar
Paul committed
120
121
122
123
124
        {
            throw std::runtime_error("Failed reading");
        }
    }

Paul's avatar
Paul committed
125
    void parse_graph(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
126
    {
Paul's avatar
Paul committed
127
        nodes = get_nodes(graph);
Paul's avatar
Paul committed
128
        for(auto&& input : graph.input())
Paul's avatar
Paul committed
129
        {
Paul's avatar
Paul committed
130
            const std::string& name = input.name();
Paul's avatar
Paul committed
131
            // TODO: Get shape of input parameter
Paul's avatar
Paul committed
132
            rtg::shape s       = parse_type(input.type());
Paul's avatar
Paul committed
133
            instructions[name] = prog.add_parameter(name, s);
Paul's avatar
Paul committed
134
        }
Paul's avatar
Paul committed
135
        for(auto&& p : nodes)
Paul's avatar
Paul committed
136
137
138
        {
            this->parse_node(p.second.name());
        }
Paul's avatar
Paul committed
139
140
    }

Paul's avatar
Paul committed
141
    void parse_node(std::string name)
Paul's avatar
Paul committed
142
    {
Paul's avatar
Paul committed
143
        if(instructions.count(name) == 0)
Paul's avatar
Paul committed
144
145
146
        {
            auto&& node = nodes.at(name);
            std::vector<rtg::instruction*> args;
Paul's avatar
Paul committed
147
            for(auto&& input : node.input())
Paul's avatar
Paul committed
148
149
150
151
152
153
154
155
156
157
158
159
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = nodes.at(input).name();
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
160
            if(ops.count(node.op_type()) == 0)
Paul's avatar
Paul committed
161
            {
Paul's avatar
Paul committed
162
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
Paul's avatar
Paul committed
163
164
165
166
167
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
Paul's avatar
Paul committed
168
        }
Paul's avatar
Paul committed
169
170
    }

Paul's avatar
Paul committed
171
    static attribute_map get_attributes(const onnx::NodeProto& node)
Paul's avatar
Paul committed
172
173
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
Paul's avatar
Paul committed
174
        for(auto&& attr : node.attribute())
Paul's avatar
Paul committed
175
        {
Paul's avatar
Paul committed
176
177
178
179
180
            result[attr.name()] = attr;
        }
        return result;
    }

Paul's avatar
Paul committed
181
    static node_map get_nodes(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
182
183
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
184
        for(auto&& node : graph.node())
Paul's avatar
Paul committed
185
186
        {
            result[node.name()] = node;
Paul's avatar
Paul committed
187
            for(auto&& output : node.output())
Paul's avatar
Paul committed
188
189
190
191
192
193
194
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
195
196
197
198
    static rtg::literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
Paul's avatar
Paul committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return rtg::literal{attr.f()};
        case onnx::AttributeProto::INT: return rtg::literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
        case onnx::AttributeProto::FLOATS:
            return rtg::literal{rtg::shape::float_type, attr.floats().begin(), attr.floats().end()};
        case onnx::AttributeProto::INTS:
            return rtg::literal{rtg::shape::int32_type, attr.ints().begin(), attr.ints().end()};
            ;
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
Paul's avatar
Paul committed
213
214
215
216
217
218
219
220
        }
    }

    static rtg::literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
        switch(t.data_type())
        {
Paul's avatar
Paul committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
            return rtg::literal{
                {rtg::shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::UINT16:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT16:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT32:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::INT64:
            return rtg::literal{
                {rtg::shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
            return rtg::literal{
                {rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return rtg::literal{
                {rtg::shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
Paul's avatar
Paul committed
253
        }
Paul's avatar
Paul committed
254
    }
Paul's avatar
Paul committed
255
256
257

    static rtg::shape parse_type(const onnx::TypeProto& t)
    {
Paul's avatar
Paul committed
258
        rtg::shape::type_t shape_type{};
Paul's avatar
Paul committed
259
260
        switch(t.tensor_type().elem_type())
        {
Paul's avatar
Paul committed
261
262
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
Paul's avatar
Paul committed
263
        case onnx::TensorProto::FLOAT: shape_type = rtg::shape::float_type; break;
Paul's avatar
Paul committed
264
265
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
Paul's avatar
Paul committed
266
267
268
269
270
        case onnx::TensorProto::INT8: shape_type = rtg::shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = rtg::shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = rtg::shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = rtg::shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = rtg::shape::int64_type; break;
Paul's avatar
Paul committed
271
272
273
274
275
276
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
Paul's avatar
Paul committed
277
278
279
        case onnx::TensorProto::DOUBLE: shape_type = rtg::shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = rtg::shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = rtg::shape::uint64_type; break;
Paul's avatar
Paul committed
280
281
282
283
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
Paul's avatar
Paul committed
284
285
286
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
Paul's avatar
Paul committed
287
        for(auto&& d : t.tensor_type().shape().dim())
Paul's avatar
Paul committed
288
289
290
291
292
293
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};
Paul's avatar
Paul committed
294

Paul's avatar
Paul committed
295
int main(int argc, char const* argv[])
Paul's avatar
Paul committed
296
297
298
299
300
{
    if(argc > 1)
    {
        std::string file = argv[1];
        std::fstream input(file.c_str(), std::ios::in | std::ios::binary);
Paul's avatar
Paul committed
301
302
303
304
305
306
307
        onnx_parser parser;
        try
        {
            parser.parse_from(input);
        }
        catch(...)
        {
Paul's avatar
Paul committed
308
            if(parser.prog)
Paul's avatar
Paul committed
309
                parser.prog.print();
Paul's avatar
Paul committed
310
311
            throw;
        }
Paul's avatar
Paul committed
312
        parser.prog.print();
Paul's avatar
Paul committed
313
314
    }
}