#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { struct tf_parser { using attribute_map = std::unordered_map; using node_map = std::unordered_map; // using input_node_map = std::unordered_map>; using op_func = std::function)>; node_map nodes; std::vector input_nodes; std::unordered_map instructions; program prog = program(); bool is_nhwc = true; std::unordered_map ops; void nhwc_to_nchw(std::size_t& dim) { switch(dim) { case 0: dim = 0; break; case 1: dim = 2; break; case 2: dim = 3; break; case 3: dim = 1; break; } } tf_parser() { add_generic_op("Identity", op::identity{}); add_generic_op("Relu", op::relu{}); // add_binary_op("BiasAdd", op::add{}); add_mem_op("AvgPool", &tf_parser::parse_pooling); add_mem_op("BiasAdd", &tf_parser::parse_biasadd); add_mem_op("ConcatV2", &tf_parser::parse_concat); add_mem_op("Const", &tf_parser::parse_constant); add_mem_op("Conv2D", &tf_parser::parse_conv); add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm); add_mem_op("MaxPool", &tf_parser::parse_pooling); add_mem_op("Reshape", &tf_parser::parse_reshape); add_mem_op("Softmax", &tf_parser::parse_softmax); add_mem_op("Squeeze", &tf_parser::parse_squeeze); } template void add_op(std::string name, F f) { ops.emplace(name, f); } // Multi output op template void add_multi_op(std::string name, F f) { ops.emplace(name, f); } template void add_mem_op(std::string name, F f) { add_op(name, [=](auto&&... xs) { return std::mem_fn(f)(*this, name, std::forward(xs)...); }); } template void add_binary_op(std::string name, T x) { add_op(name, [this, x](attribute_map attributes, std::vector args) { if(args.size() != 2) MIGRAPHX_THROW("binary operators should have 2 operands"); auto l0 = args[1]; if(contains(attributes, "data_format")) { if(is_nhwc) { l0 = prog.add_instruction(op::transpose{{0,3,1,2}}, args[1]); } } return add_broadcastable_binary_op(args[0], l0, x); }); } template instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x) { if(arg0->get_shape() != arg1->get_shape()) { // Example: // s0 = (3,2,4,5) and s1 = (2,1,1) // // In this case we need to broadcast (:,1,1) portion of // s1 plus broadcast the 1st dimension of s1 // giving output_lens = (3,2,4,5) // // Another example: // s0 = (3,2,1,5) and s1 = (2,7,5) // In this case we need to broadcast the (:,:,1:,:) axis // of s0 plus the 1st dimension of s1 giving // output_lens = (3,2,7,5) // // Get lengths for both arguments const std::vector* s0 = &arg0->get_shape().lens(); const std::vector* s1 = &arg1->get_shape().lens(); // Make sure s0 is the smaller size if(s0->size() > s1->size()) std::swap(s0, s1); std::vector output_lens(*s1); auto offset = s1->size() - s0->size(); std::transform(s0->begin(), s0->end(), s1->begin() + offset, output_lens.begin() + offset, [](auto a, auto b) { return std::max(a, b); }); auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0); auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1); return prog.add_instruction(x, l0, l1); } else { return prog.add_instruction(x, {arg0, arg1}); } } template void add_generic_op(std::string name, T x) { add_op(name, [this, x](attribute_map, std::vector args) { return prog.add_instruction(x, args); }); } instruction_ref parse_batchnorm(const std::string&, attribute_map attributes, std::vector args) { float epsilon = 1e-5f; float momentum = 0.9f; op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial; if(contains(attributes, "epsilon")) { epsilon = attributes.at("epsilon").f(); } op::batch_norm_inference op{epsilon, momentum, bn_mode}; return prog.add_instruction(op, std::move(args)); } instruction_ref parse_biasadd(const std::string&, attribute_map, std::vector args) { // assume second arg is bias std::vector dims; copy(args[0]->get_shape().lens(), std::back_inserter(dims)); auto l0 = prog.add_instruction(op::reshape{dims}, args[1]); return prog.add_instruction(op::add{}, args[0], l0); } instruction_ref parse_concat(const std::string&, attribute_map attributes, std::vector args) { // get index for axis within args std::size_t axis_idx = attributes.at("N").i(); std::size_t axis = args[axis_idx]->eval().at(); if(is_nhwc and axis < 4) { nhwc_to_nchw(axis); } op::concat op{axis}; // return only first N arguments (assuming last index is the axis value) return prog.add_instruction( op, std::vector(args.begin(), args.begin() + args.size() - 1)); } instruction_ref parse_constant(const std::string&, attribute_map attributes, const std::vector&) { literal v = parse_tensor(attributes.at("value").tensor()); return prog.add_literal(v); } instruction_ref parse_conv(const std::string&, attribute_map attributes, std::vector args) { op::convolution op; if(contains(attributes, "padding")) { const std::string& pad_mode = attributes.at("padding").s(); if(pad_mode.find("SAME") != std::string::npos) { op.padding_mode = op::padding_mode_t::same; } else if(pad_mode.find("EXPLICIT") != std::string::npos) { std::vector padding; copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding)); if(padding.size() != 4) { MIGRAPHX_THROW("padding should have 4 values"); } if(padding[0] != padding[2] || padding[1] != padding[3]) { MIGRAPHX_THROW("migraphx does not support asymetric padding"); } op.padding[0] = padding[0]; op.padding[1] = padding[1]; } } if(contains(attributes, "strides")) { std::vector stride; copy(attributes.at("strides").list().i(), std::back_inserter(stride)); if(stride.size() != 4) { MIGRAPHX_THROW("strides should have 4 values"); } if(is_nhwc) { op.stride[0] = stride[1]; op.stride[1] = stride[2]; } else { op.stride[0] = stride[2]; op.stride[1] = stride[3]; } } if(contains(attributes, "dilations")) { std::vector dilation; copy(attributes.at("dilations").list().i(), std::back_inserter(dilation)); if(dilation.size() != 4) { MIGRAPHX_THROW("dilation should have 4 values"); } if(is_nhwc) { op.dilation[0] = dilation[1]; op.dilation[1] = dilation[2]; } else { op.dilation[0] = dilation[2]; op.dilation[1] = dilation[3]; } } auto l0 = args[0]; if(l0->name() == "@param") { if(is_nhwc) l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, l0); } auto l1 = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]); return prog.add_instruction(op, {l0, l1}); } instruction_ref parse_pooling(const std::string& name, attribute_map attributes, std::vector args) { op::pooling op{starts_with(name, "Max") ? "max" : "average"}; if(contains(attributes, "padding")) { const std::string& pad_mode = attributes.at("padding").s(); if(pad_mode.find("SAME") != std::string::npos) { op.padding_mode = op::padding_mode_t::same; } else if(pad_mode.find("VALID") != std::string::npos) { op.padding_mode = op::padding_mode_t::valid; } } if(contains(attributes, "strides")) { std::vector stride; copy(attributes.at("strides").list().i(), std::back_inserter(stride)); if(stride.size() != 4) { MIGRAPHX_THROW("strides should have 4 values"); } if(is_nhwc) { op.stride[0] = stride[1]; op.stride[1] = stride[2]; } else { op.stride[0] = stride[2]; op.stride[1] = stride[3]; } } if(contains(attributes, "ksize")) { std::vector ksize; copy(attributes.at("ksize").list().i(), std::back_inserter(ksize)); if(ksize.size() != 4) { MIGRAPHX_THROW("ksize should have 4 values"); } if(is_nhwc) { op.lengths[0] = ksize[1]; op.lengths[1] = ksize[2]; } else { op.lengths[0] = ksize[2]; op.lengths[1] = ksize[3]; } } return prog.add_instruction(op, std::move(args)); } instruction_ref parse_reshape(const std::string&, attribute_map, std::vector args) { op::reshape op; if(args.size() != 2) MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)"); literal s = args[1]->get_literal(); s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); }); return prog.add_instruction(op, args[0]); } void parse_from(std::istream& is) { tensorflow::GraphDef graph; if(graph.ParseFromIstream(&is)) { this->parse_graph(graph); } else { throw std::runtime_error("Failed reading tf file"); } } instruction_ref parse_softmax(const std::string&, const attribute_map&, std::vector args) { auto dims = args.front()->get_shape().lens(); auto r = prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front()); auto s = prog.add_instruction(op::softmax{}, r); return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s); } instruction_ref parse_squeeze(const std::string&, attribute_map attributes, std::vector args) { op::squeeze op; auto axes = attributes.at("squeeze_dims").list().i(); copy(axes, std::back_inserter(op.axes)); auto l0 = args[0]; if(is_nhwc) { l0 = prog.add_instruction(op::transpose{{0,2,3,1}}, args[0]); } return prog.add_instruction(op, l0); } void parse_graph(const tensorflow::GraphDef& graph) { nodes = get_nodes(graph, input_nodes); for(auto&& input : input_nodes) { const std::string& name = input.name(); attribute_map input_attrs = get_attributes(input); shape::type_t shape_type = parse_type(input_attrs.at("dtype").type()); std::vector dims = parse_dims(input_attrs.at("shape").shape()); shape s = shape{shape_type, dims}; instructions[name] = prog.add_parameter(name, s); } for(auto&& p : nodes) { this->parse_node(p.first); } } void parse_node(const std::string& name) { if(instructions.count(name) == 0) { auto&& node = nodes.at(name); std::vector args; // std::cout << name << std::endl; for(auto&& input : node.input()) { if(nodes.count(input) > 0) { auto&& iname = get_name(nodes.at(input)); assert(name != iname); this->parse_node(iname); args.push_back(instructions.at(iname)); } else { args.push_back(instructions.at(input)); } } if(ops.count(node.op()) == 0) { instructions[name] = prog.add_instruction(unknown{node.op()}, args); } else { instructions[name] = ops[node.op()](get_attributes(node), args); } } } static attribute_map get_attributes(const tensorflow::NodeDef& node) { attribute_map result; for(auto&& attr : node.attr()) { result[attr.first] = attr.second; } return result; } static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); } static node_map get_nodes(const tensorflow::GraphDef& graph, std::vector& input_nodes) { node_map result; for(auto&& node : graph.node()) { auto node_name = get_name(node); // assume each node in graph has an associated name if(node_name.empty()) MIGRAPHX_THROW("tf node with no name found"); result[node_name] = node; if(node.op() == "Placeholder") { input_nodes.push_back(node); } } return result; } static shape::type_t parse_type(const tensorflow::DataType t) { shape::type_t shape_type{}; switch(t) { case tensorflow::DataType::DT_INVALID: break; // throw std::runtime_error("Unsupported type UNDEFINED"); case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break; case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break; case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break; case tensorflow::DataType::DT_UINT8: break; // throw std::runtime_error("Unsupported type UINT8"); case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break; case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break; case tensorflow::DataType::DT_STRING: break; // throw std::runtime_error("Unsupported type STRING"); case tensorflow::DataType::DT_COMPLEX64: break; // throw std::runtime_error("Unsupported type COMPLEX64"); case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break; case tensorflow::DataType::DT_BOOL: break; // throw std::runtime_error("Unsupported type BOOL"); case tensorflow::DataType::DT_QINT8: break; // throw std::runtime_error("Unsupported type QINT8"); case tensorflow::DataType::DT_QUINT8: break; // throw std::runtime_error("Unsupported type QUINT8"); case tensorflow::DataType::DT_QINT32: break; // throw std::runtime_error("Unsupported type QINT32"); case tensorflow::DataType::DT_BFLOAT16: break; // throw std::runtime_error("Unsupported type BFLOAT16"); case tensorflow::DataType::DT_QINT16: break; // throw std::runtime_error("Unsupported type QINT16"); case tensorflow::DataType::DT_QUINT16: break; // throw std::runtime_error("Unsupported type QUINT16"); case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break; case tensorflow::DataType::DT_COMPLEX128: break; // throw std::runtime_error("Unsupported type COMPLEX128"); case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break; case tensorflow::DataType::DT_RESOURCE: break; // throw std::runtime_error("Unsupported type RESOURCE"); case tensorflow::DataType::DT_VARIANT: break; // throw std::runtime_error("Unsupported type VARIANT"); case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break; case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break; default: break; } return shape_type; } static literal parse_tensor(const tensorflow::TensorProto t) { std::vector dims = parse_dims(t.tensor_shape()); if(dims.empty()) { dims = {1}; } if(!t.tensor_content().empty()) // has raw data { const std::string& s = t.tensor_content(); switch(t.dtype()) { case tensorflow::DataType::DT_INVALID: throw std::runtime_error(""); case tensorflow::DataType::DT_FLOAT: return literal{{shape::float_type, dims}, s.data()}; case tensorflow::DataType::DT_UINT8: throw std::runtime_error(""); case tensorflow::DataType::DT_INT8: return literal{{shape::int32_type, dims}, s.data()}; case tensorflow::DataType::DT_UINT16: return literal{{shape::int32_type, dims}, s.data()}; case tensorflow::DataType::DT_INT16: return literal{{shape::int32_type, dims}, s.data()}; case tensorflow::DataType::DT_INT32: return literal{{shape::int32_type, dims}, s.data()}; case tensorflow::DataType::DT_INT64: return literal{{shape::int64_type, dims}, s.data()}; case tensorflow::DataType::DT_STRING: throw std::runtime_error(""); case tensorflow::DataType::DT_BOOL: return literal{{shape::int32_type, dims}, s.data()}; case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()}; case tensorflow::DataType::DT_DOUBLE: return literal{{shape::double_type, dims}, s.data()}; case tensorflow::DataType::DT_UINT32: throw std::runtime_error(""); case tensorflow::DataType::DT_UINT64: throw std::runtime_error(""); case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error(""); case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error(""); default: break; } MIGRAPHX_THROW("Invalid tensor type"); } switch(t.dtype()) { case tensorflow::DataType::DT_INVALID: throw std::runtime_error(""); case tensorflow::DataType::DT_FLOAT: return literal{{shape::float_type, dims}, t.float_val().begin(), t.float_val().end()}; case tensorflow::DataType::DT_UINT8: throw std::runtime_error(""); case tensorflow::DataType::DT_INT8: return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()}; case tensorflow::DataType::DT_UINT16: return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()}; case tensorflow::DataType::DT_INT16: return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()}; case tensorflow::DataType::DT_INT32: return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()}; case tensorflow::DataType::DT_INT64: return literal{{shape::int64_type, dims}, t.int64_val().begin(), t.int64_val().end()}; case tensorflow::DataType::DT_STRING: throw std::runtime_error(""); case tensorflow::DataType::DT_BOOL: return literal{{shape::int32_type, dims}, t.bool_val().begin(), t.bool_val().end()}; case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, t.half_val().begin(), t.half_val().end()}; case tensorflow::DataType::DT_DOUBLE: return literal{ {shape::double_type, dims}, t.double_val().begin(), t.double_val().end()}; case tensorflow::DataType::DT_UINT32: throw std::runtime_error(""); case tensorflow::DataType::DT_UINT64: throw std::runtime_error(""); case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error(""); case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error(""); default: break; } MIGRAPHX_THROW("Invalid tensor type"); } static std::vector parse_dims(const tensorflow::TensorShapeProto& s) { std::vector dims; auto input_dims = s.dim(); for(auto dim : input_dims) { dims.push_back(dim.size()); } return dims; } }; program parse_tf(const std::string& name, bool is_nhwc) { std::fstream input(name.c_str(), std::ios::in | std::ios::binary); tf_parser parser; parser.is_nhwc = is_nhwc; #ifndef NDEBUG // Log the program when it can't be parsed try { parser.parse_from(input); } catch(...) { std::cerr << parser.prog << std::endl; throw; } #else parser.parse_from(input); #endif return std::move(parser.prog); } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx