gen_tf_pb.py 20.5 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
import numpy as np
import tensorflow as tf
3
from tensorflow.core.framework import attr_value_pb2
Khalique's avatar
Khalique committed
4

Khalique's avatar
Khalique committed
5

Khalique's avatar
Khalique committed
6
7
8
9
def tf_test(op_test):
    def run_test():
        g1 = tf.Graph()
        op_test(g1)
Khalique's avatar
Khalique committed
10
11
12
13
14
        tf.io.write_graph(g1,
                          '.',
                          '{}.pb'.format(op_test.__name__),
                          as_text=False)

Khalique's avatar
Khalique committed
15
    return run_test
Khalique's avatar
Khalique committed
16

Khalique's avatar
Khalique committed
17

Khalique's avatar
Khalique committed
18
19
@tf_test
def add_test(g1):
Khalique's avatar
Khalique committed
20
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
21
22
23
24
25
26
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
27
28
        tf.add(g1_input, g2_input, name='add1')

Khalique's avatar
Khalique committed
29

kahmed10's avatar
kahmed10 committed
30
31
32
33
34
35
36
37
38
39
40
41
@tf_test
def addv2_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
        tf.raw_ops.AddV2(x=g1_input, y=g2_input, name='add1')


Khalique's avatar
Khalique committed
42
43
@tf_test
def add_bcast_test(g1):
Khalique's avatar
Khalique committed
44
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
45
46
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 1), name='1')
Khalique's avatar
Khalique committed
47
48
        tf.math.add(g1_input, g2_input, name='add_bcast1')

Khalique's avatar
Khalique committed
49

50
51
52
@tf_test
def argmax_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
53
54
55
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(3, 4, 5, 6),
                                            name='0')
56
57
58
59
60
61
        tf.argmax(g1_input, axis=2, name='argmax1')


@tf_test
def argmin_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
62
63
64
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(3, 4, 5, 6),
                                            name='0')
65
66
67
        tf.argmin(g1_input, axis=2, name='argmin1')


Khalique's avatar
Khalique committed
68
69
@tf_test
def assert_less_equal_test(g1):
Khalique's avatar
Khalique committed
70
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
71
72
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='1')
Khalique's avatar
Khalique committed
73
        with tf.control_dependencies(
kahmed10's avatar
kahmed10 committed
74
            [tf.compat.v1.assert_less_equal(g1_input, g2_input)]):
Khalique's avatar
Khalique committed
75
76
            tf.add(g1_input, g2_input, name='add1')

Khalique's avatar
Khalique committed
77

Khalique's avatar
Khalique committed
78
79
@tf_test
def batchmatmul_test(g1):
Khalique's avatar
Khalique committed
80
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
81
82
83
84
85
86
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 8, 4),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 4, 8),
                                            name='1')
Khalique's avatar
Khalique committed
87
88
89
90
91
92
        tf.matmul(g1_input,
                  g2_input,
                  transpose_a=True,
                  transpose_b=True,
                  name='batchmatmul1')

Khalique's avatar
Khalique committed
93

Khalique's avatar
Khalique committed
94
95
@tf_test
def batchnorm_test(g1):
Khalique's avatar
Khalique committed
96
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 32),
                                            name='0')
        g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name='1')
        g1_offset = tf.compat.v1.placeholder(tf.float32, shape=(32), name='2')
        g1_mean = tf.compat.v1.placeholder(tf.float32, shape=(32), name='3')
        g1_variance = tf.compat.v1.placeholder(tf.float32,
                                               shape=(32),
                                               name='4')
        tf.compat.v1.nn.fused_batch_norm(x=g1_input,
                                         scale=g1_scale,
                                         offset=g1_offset,
                                         mean=g1_mean,
                                         variance=g1_variance,
                                         epsilon=0.00001,
                                         is_training=False,
                                         name='batchnorm1')


@tf_test
def batchnormv3_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 32),
                                            name='0')
Khalique's avatar
Khalique committed
122
        g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name='1')
kahmed10's avatar
kahmed10 committed
123
124
125
126
127
128
129
130
131
132
133
134
135
        g1_offset = tf.compat.v1.placeholder(tf.float32, shape=(32), name='2')
        g1_mean = tf.compat.v1.placeholder(tf.float32, shape=(32), name='3')
        g1_variance = tf.compat.v1.placeholder(tf.float32,
                                               shape=(32),
                                               name='4')
        tf.raw_ops.FusedBatchNormV3(x=g1_input,
                                    scale=g1_scale,
                                    offset=g1_offset,
                                    mean=g1_mean,
                                    variance=g1_variance,
                                    epsilon=0.00001,
                                    is_training=False,
                                    name='batchnorm1')
Khalique's avatar
Khalique committed
136

Khalique's avatar
Khalique committed
137

Khalique's avatar
Khalique committed
138
139
@tf_test
def biasadd_test(g1):
Khalique's avatar
Khalique committed
140
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
141
142
143
144
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 500),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(500), name='1')
Khalique's avatar
Khalique committed
145
146
        tf.nn.bias_add(g1_input, g2_input, name='bias_add1')

Khalique's avatar
Khalique committed
147

kahmed10's avatar
kahmed10 committed
148
149
150
151
152
153
154
155
@tf_test
def biasadd_scalar_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(1, 1), name='0')
        g2_const = tf.constant(1.0, tf.float32, shape=(1, ), name='1')
        tf.nn.bias_add(g1_input, g2_const, name='bias_add1')


Khalique's avatar
Khalique committed
156
157
@tf_test
def cast_test(g1):
Khalique's avatar
Khalique committed
158
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
159
160
161
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
162
163
        tf.cast(g1_input, dtype=tf.int32, name='cast1')

Khalique's avatar
Khalique committed
164

Khalique's avatar
Khalique committed
165
166
@tf_test
def concat_test(g1):
Khalique's avatar
Khalique committed
167
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
168
169
170
171
172
173
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(4, 7, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(4, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
174
175
        tf.concat([g1_input, g2_input], axis=1, name='concat1')

Khalique's avatar
Khalique committed
176

Khalique's avatar
Khalique committed
177
178
@tf_test
def const_test(g1):
Khalique's avatar
Khalique committed
179
    with g1.as_default():
Khalique's avatar
Khalique committed
180
181
        tf.constant(1.0, dtype=tf.float32, name='constant1')

Khalique's avatar
Khalique committed
182

Khalique's avatar
Khalique committed
183
184
@tf_test
def conv_test(g1):
Khalique's avatar
Khalique committed
185
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
186
187
188
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
189
190
191
192
193
194
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        tf.nn.conv2d(g1_input, g1_weights, [1, 1, 1, 1], "SAME", name='conv1')

Khalique's avatar
Khalique committed
195

kahmed10's avatar
kahmed10 committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
@tf_test
def conv_nchw_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        tf.nn.conv2d(g1_input,
                     g1_weights, [1, 1, 1, 1],
                     "SAME",
                     data_format='NCHW',
                     name='conv1')


Khalique's avatar
Khalique committed
213
214
@tf_test
def depthwiseconv_test(g1):
Khalique's avatar
Khalique committed
215
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
216
217
218
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
219
220
221
222
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 1),
                                 name='1')
kahmed10's avatar
kahmed10 committed
223
224
225
226
        tf.compat.v1.nn.depthwise_conv2d_native(g1_input,
                                                g1_weights, [1, 1, 1, 1],
                                                "SAME",
                                                name='depthwiseconv1')
Khalique's avatar
Khalique committed
227

Khalique's avatar
Khalique committed
228

Khalique's avatar
Khalique committed
229
230
@tf_test
def expanddims_test(g1):
Khalique's avatar
Khalique committed
231
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
232
233
234
235
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(2, 3, 4),
                                            name='0')
        tf.expand_dims(g1_input, axis=0, name='expanddims_neg')
Khalique's avatar
Khalique committed
236

Khalique's avatar
Khalique committed
237

Khalique's avatar
Khalique committed
238
239
@tf_test
def gather_test(g1):
Khalique's avatar
Khalique committed
240
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
241
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 4), name='0')
Khalique's avatar
Khalique committed
242
243
        tf.gather(g1_input, [1, 1], axis=1, name='gather1')

Khalique's avatar
Khalique committed
244

Khalique's avatar
Khalique committed
245
246
@tf_test
def identity_test(g1):
Khalique's avatar
Khalique committed
247
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
248
249
250
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
251
252
        tf.identity(g1_input, 'identity')

Khalique's avatar
Khalique committed
253

Khalique's avatar
Khalique committed
254
255
@tf_test
def matmul_test(g1):
Khalique's avatar
Khalique committed
256
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
257
258
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(8, 4), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(4, 8), name='1')
Khalique's avatar
Khalique committed
259
260
261
262
263
264
        tf.matmul(g1_input,
                  g2_input,
                  transpose_a=True,
                  transpose_b=True,
                  name='matmul1')

Khalique's avatar
Khalique committed
265

Khalique's avatar
Khalique committed
266
267
@tf_test
def mean_test(g1):
Khalique's avatar
Khalique committed
268
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
269
270
271
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
272
273
274
275
276
277
        tf.math.reduce_mean(g1_input, axis=(2, 3), keepdims=True, name='mean1')
        tf.math.reduce_mean(g1_input,
                            axis=(2, 3),
                            keepdims=False,
                            name='mean2')

Khalique's avatar
Khalique committed
278

Khalique's avatar
Khalique committed
279
280
@tf_test
def mean_test_nhwc(g1):
Khalique's avatar
Khalique committed
281
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
282
283
284
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
285
286
287
288
289
290
        tf.math.reduce_mean(g1_input, axis=(1, 2), keepdims=True, name='mean1')
        tf.math.reduce_mean(g1_input,
                            axis=(1, 2),
                            keepdims=False,
                            name='mean2')

Khalique's avatar
Khalique committed
291

Khalique's avatar
Khalique committed
292
293
@tf_test
def mul_test(g1):
Khalique's avatar
Khalique committed
294
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
295
296
297
298
299
300
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 16),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 16),
                                            name='1')
Khalique's avatar
Khalique committed
301
302
        tf.multiply(g1_input, g2_input, name='mul1')

Khalique's avatar
Khalique committed
303

kahmed10's avatar
kahmed10 committed
304
305
306
307
308
309
@tf_test
def noop_test(g1):
    with g1.as_default():
        tf.raw_ops.NoOp(name='noop1')


kahmed10's avatar
kahmed10 committed
310
311
312
313
314
315
316
@tf_test
def onehot_test(g1):
    with g1.as_default():
        g1_input = tf.constant((1, 1, 1, 1, 1), dtype=tf.int32)
        tf.one_hot(g1_input, 2, name='onehot1')


Khalique's avatar
Khalique committed
317
318
@tf_test
def pack_test(g1):
Khalique's avatar
Khalique committed
319
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
320
321
322
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='1')
        g3_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='2')
Khalique's avatar
Khalique committed
323
324
        tf.stack([g1_input, g2_input, g3_input], axis=1, name='pack1')

Khalique's avatar
Khalique committed
325

Khalique's avatar
Khalique committed
326
327
@tf_test
def pack_test_nhwc(g1):
Khalique's avatar
Khalique committed
328
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
329
330
331
332
333
334
335
336
337
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='1')
        g3_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='2')
Khalique's avatar
Khalique committed
338
339
        tf.stack([g1_input, g2_input, g3_input], axis=3, name='pack1')

Khalique's avatar
Khalique committed
340

Khalique's avatar
Khalique committed
341
342
@tf_test
def pooling_test(g1):
Khalique's avatar
Khalique committed
343
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
        tf.compat.v1.nn.avg_pool(value=g1_input,
                                 ksize=(1, 2, 2, 1),
                                 strides=(1, 2, 2, 1),
                                 padding='VALID',
                                 data_format='NHWC',
                                 name='avg_pooling')
        tf.compat.v1.nn.max_pool(value=g1_input,
                                 ksize=(1, 2, 2, 1),
                                 strides=(1, 2, 2, 1),
                                 padding='VALID',
                                 data_format='NHWC',
                                 name='max_pooling')
Khalique's avatar
Khalique committed
359

Khalique's avatar
Khalique committed
360

Khalique's avatar
Khalique committed
361
362
@tf_test
def pow_test(g1):
Khalique's avatar
Khalique committed
363
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
364
365
366
367
368
369
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
370
371
        tf.pow(g1_input, g2_input, name='pow1')

Khalique's avatar
Khalique committed
372

Khalique's avatar
Khalique committed
373
374
@tf_test
def relu_test(g1):
Khalique's avatar
Khalique committed
375
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
376
377
378
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
379
380
        tf.nn.relu(g1_input, 'relu')

Khalique's avatar
Khalique committed
381

Khalique's avatar
Khalique committed
382
383
@tf_test
def relu6_test(g1):
Khalique's avatar
Khalique committed
384
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
385
386
387
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
388
389
        tf.nn.relu6(g1_input, 'relu6')

Khalique's avatar
Khalique committed
390

Khalique's avatar
Khalique committed
391
392
@tf_test
def reshape_test(g1):
Khalique's avatar
Khalique committed
393
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
394
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(16), name='0')
Khalique's avatar
Khalique committed
395
396
        tf.reshape(g1_input, (1, 1, 1, 16), 'reshape')

Khalique's avatar
Khalique committed
397

Khalique's avatar
Khalique committed
398
399
@tf_test
def rsqrt_test(g1):
Khalique's avatar
Khalique committed
400
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
401
402
403
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
404
405
        tf.math.rsqrt(g1_input, 'rsqrt')

Khalique's avatar
Khalique committed
406

407
408
409
@tf_test
def shape_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
410
411
412
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
413
414
415
    g1.create_op(op_type='Shape', inputs=[g1_input])


Khalique's avatar
Khalique committed
416
417
@tf_test
def slice_test(g1):
Khalique's avatar
Khalique committed
418
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
419
420
421
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 10),
                                            name='0')
Khalique's avatar
Khalique committed
422
423
        tf.slice(g1_input, [1, 0], [2, -1], name='slice1')

Khalique's avatar
Khalique committed
424

Khalique's avatar
Khalique committed
425
426
@tf_test
def softmax_test(g1):
Khalique's avatar
Khalique committed
427
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
428
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(1, 3), name='0')
Khalique's avatar
Khalique committed
429
430
        tf.nn.softmax(g1_input, name='softmax')

Khalique's avatar
Khalique committed
431

kahmed10's avatar
kahmed10 committed
432
433
434
@tf_test
def split_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
435
436
437
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
438
439
440
441
442
443
444
445
        split0, split1, split2 = tf.split(g1_input, 3, 1, name='split')
        tf.concat([split0, split1], axis=1, name='concat1')
        tf.concat([split1, split2], axis=1, name='concat2')


@tf_test
def split_test_one_output(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
446
447
448
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
449
450
451
452
453
454
        tf.split(g1_input, 1, 1, name='split')


@tf_test
def split_test_vector_as_input(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
455
456
457
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
458
459
460
461
462
463
464
        split0, split1, split2 = tf.split(g1_input, [4, 15, 11],
                                          1,
                                          name='split')
        tf.concat([split0, split1], axis=1, name='concat1')
        tf.concat([split1, split2], axis=1, name='concat2')


Khalique's avatar
Khalique committed
465
466
@tf_test
def sqdiff_test(g1):
Khalique's avatar
Khalique committed
467
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
468
469
470
471
472
473
474
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
        tf.compat.v1.squared_difference(g1_input, g2_input, name='sqdiff')
Khalique's avatar
Khalique committed
475

Khalique's avatar
Khalique committed
476

Khalique's avatar
Khalique committed
477
478
@tf_test
def squeeze_test(g1):
Khalique's avatar
Khalique committed
479
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
480
481
482
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 3, 1),
                                            name='0')
Khalique's avatar
Khalique committed
483
484
        tf.squeeze(g1_input, name='squeeze')

Khalique's avatar
Khalique committed
485

Khalique's avatar
Khalique committed
486
487
@tf_test
def stopgradient_test(g1):
Khalique's avatar
Khalique committed
488
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
489
490
491
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
492
493
        tf.stop_gradient(g1_input, 'stopgradient')

Khalique's avatar
Khalique committed
494

Khalique's avatar
Khalique committed
495
496
@tf_test
def stridedslice_test(g1):
Khalique's avatar
Khalique committed
497
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
498
499
500
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 10),
                                            name='0')
Khalique's avatar
Khalique committed
501
502
503
504
        tf.strided_slice(g1_input, [0, 0, 0, 0], [1, 1, 1, 5], [1, 1, 1, 1],
                         shrink_axis_mask=2,
                         name='stridedslice1')

Khalique's avatar
Khalique committed
505

Khalique's avatar
Khalique committed
506
507
@tf_test
def stridedslice_masks_test(g1):
Khalique's avatar
Khalique committed
508
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
509
510
511
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 3, 10),
                                            name='0')
Khalique's avatar
Khalique committed
512
513
514
515
516
        tf.strided_slice(g1_input, [0, 1, 1, 0], [0, 0, 0, 0], [1, 1, 1, 1],
                         begin_mask=9,
                         end_mask=15,
                         name='stridedslice1')

Khalique's avatar
Khalique committed
517

Khalique's avatar
Khalique committed
518
519
@tf_test
def sub_test(g1):
Khalique's avatar
Khalique committed
520
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
521
522
523
524
525
526
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
527
528
        tf.subtract(g1_input, g2_input, name='sub1')

Khalique's avatar
Khalique committed
529

Khalique's avatar
Khalique committed
530
531
@tf_test
def tanh_test(g1):
Khalique's avatar
Khalique committed
532
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
533
534
535
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
536
537
        tf.tanh(g1_input, 'tanh')

Khalique's avatar
Khalique committed
538

Khalique's avatar
Khalique committed
539
540
@tf_test
def transpose_test(g1):
Khalique's avatar
Khalique committed
541
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
542
543
544
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
545
        tf.transpose(g1_input, perm=[0, 2, 3, 1], name='transpose')
546
547
548
549
550


@tf_test
def variable_batch_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
551
552
553
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(0, 3, 16, 16),
                                            name='0')
554
        tf.identity(g1_input, name='identity')
kahmed10's avatar
kahmed10 committed
555
556
557
558
559
560
561
562
563
564
565
566
567


if __name__ == '__main__':
    add_test()
    addv2_test()
    add_bcast_test()
    argmax_test()
    argmin_test()
    assert_less_equal_test()
    batchmatmul_test()
    batchnorm_test()
    batchnormv3_test()
    biasadd_test()
kahmed10's avatar
kahmed10 committed
568
    biasadd_scalar_test()
kahmed10's avatar
kahmed10 committed
569
570
571
572
    cast_test()
    concat_test()
    const_test()
    conv_test()
kahmed10's avatar
kahmed10 committed
573
    conv_nchw_test()
kahmed10's avatar
kahmed10 committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    depthwiseconv_test()
    expanddims_test()
    gather_test()
    identity_test()
    matmul_test()
    mean_test()
    mean_test_nhwc()
    mul_test()
    onehot_test()
    noop_test()
    pack_test()
    pack_test_nhwc()
    pooling_test()
    pow_test()
    relu_test()
    relu6_test()
    reshape_test()
    rsqrt_test()
    shape_test()
    slice_test()
    softmax_test()
    split_test()
    split_test_one_output()
    split_test_vector_as_input()
    sqdiff_test()
    squeeze_test()
    stopgradient_test()
    stridedslice_test()
    stridedslice_masks_test()
    sub_test()
    tanh_test()
    transpose_test()
    variable_batch_test()