fuse_ops.cpp 35 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
4
5
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
kahmed10's avatar
kahmed10 committed
6
#include <migraphx/gpu/clip.hpp>
Paul's avatar
Paul committed
7
#include <migraphx/gpu/convolution.hpp>
8
#include <migraphx/gpu/device_name.hpp>
9
#include <migraphx/gpu/oper.hpp>
kahmed10's avatar
kahmed10 committed
10
11
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/mul.hpp>
12
#include <migraphx/gpu/gemm.hpp>
kahmed10's avatar
kahmed10 committed
13
#include <migraphx/gpu/device/layernorm.hpp>
kahmed10's avatar
kahmed10 committed
14
#include <migraphx/gpu/device/gelu.hpp>
Paul's avatar
Paul committed
15
#include <migraphx/gpu/device/mul_add.hpp>
16
17
18
19
20
#include <migraphx/gpu/device/add_clip.hpp>
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/add_tanh.hpp>
#include <migraphx/gpu/device/mul_add_relu.hpp>
Paul's avatar
Paul committed
21
#include <migraphx/gpu/device/add.hpp>
22
23
24
#include <migraphx/match/layernorm.hpp>
#include <migraphx/match/gelu_erf.hpp>
#include <migraphx/match/gelu_tanh.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/instruction.hpp>
26
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
27
#include <migraphx/array.hpp>
Paul's avatar
Paul committed
28
#include <migraphx/make_op.hpp>
kahmed10's avatar
kahmed10 committed
29
#include <migraphx/op/clip.hpp>
kahmed10's avatar
kahmed10 committed
30
#include <cmath>
31
#include <set>
Paul's avatar
Paul committed
32
33

namespace migraphx {
Paul's avatar
Paul committed
34
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
35
36
namespace gpu {

37
38
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION)

Paul's avatar
Paul committed
39
40
41
42
43
44
45
46
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
47
    template <class T>
Paul's avatar
Paul committed
48
49
50
51
52
53
54
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

55
56
    fusion() = default;

Paul's avatar
Paul committed
57
58
    fusion(const shape& input)
    {
59
        assert(input.standard());
Paul's avatar
Paul committed
60
        auto t = make_tensor(input);
Paul's avatar
Paul committed
61
        fp     = make_fusion_plan(t);
62
        assert(fp);
Paul's avatar
Paul committed
63
64
65
        keep_alive(std::move(t));
    }

66
67
    bool empty() const { return fp == nullptr; }

Paul's avatar
Paul committed
68
69
    op_t operator[](std::size_t i) const
    {
70
        assert(fp);
Paul's avatar
Paul committed
71
72
73
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
74
            MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i));
Paul's avatar
Paul committed
75
76
77
        return result;
    }

78
79
80
81
82
    auto get() const
    {
        assert(fp);
        return fp.get();
    }
Paul's avatar
Paul committed
83
84
85

    op_t create_bias(const shape& bias)
    {
86
        assert(fp);
Paul's avatar
Paul committed
87
        op_t result;
Paul's avatar
Paul committed
88
89
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
90
91
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
92
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
93
94
95
96
97
        return result;
    }

    op_t create_relu()
    {
98
        assert(fp);
Paul's avatar
Paul committed
99
100
101
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
102
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
103
104
105
106
107
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
108
        assert(fp);
Paul's avatar
Paul committed
109
        op_t result;
Paul's avatar
Paul committed
110
111
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
112
113
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
114
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
115
116
        return result;
    }
Paul's avatar
Paul committed
117
118
119

    shape get_workspace(context&)
    {
120
        // assert(fp);
Paul's avatar
Paul committed
121
122
123
124
125
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
126
127
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
128
129
130
        return shape{shape::int8_type, {ws_size}};
    }

131
    bool compile(context& ctx)
Paul's avatar
Paul committed
132
    {
133
        assert(fp);
134
135
        return miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get()) ==
               miopenStatusSuccess;
Paul's avatar
Paul committed
136
137
    }

Paul's avatar
Paul committed
138
139
140
141
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
142
    {
143
        assert(fp);
Paul's avatar
Paul committed
144
145
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
146
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
147
148
149
150
151
152
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
153
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
154
            MIGRAPHX_THROW("Failed to execute fusion plan");
Paul's avatar
Paul committed
155
156
        return y;
    }
Paul's avatar
Paul committed
157
158
};

159
160
161
162
163
164
const std::unordered_set<std::string>& get_supported_archs()
{
    static std::unordered_set<std::string> supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"};
    return supported_archs;
}

Paul's avatar
Paul committed
165
MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
Paul's avatar
Paul committed
166
167
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
168
169
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
170
171
}

Paul's avatar
Paul committed
172
MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
Paul's avatar
Paul committed
173
{
174
    const auto device_name = trim(split_string(get_device_name(), ':').front());
175
176
    if(not contains(get_supported_archs(), device_name))
        return false;
177
178
    if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{}))
        return false;
Paul's avatar
Paul committed
179
180
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
181
182
    if(ins->get_shape().type() != shape::float_type)
        return false;
Paul's avatar
Paul committed
183
184
185
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
Khalique's avatar
Khalique committed
186
    if(conv.op.group > 1)
Khalique's avatar
Khalique committed
187
        return false;
Paul's avatar
Paul committed
188
    if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
Paul's avatar
Paul committed
189
        return false;
190
191
192
193
194
195

    // Do not fuse non-symmetric input
    auto input_lens = ins->inputs().at(0)->get_shape().lens();
    if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
        return false;

Paul's avatar
Paul committed
196
    auto op = conv.op;
197
198
    // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
    if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
199
       wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
200
        return false;
kahmed10's avatar
kahmed10 committed
201
    return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and
202
           contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
Paul's avatar
Paul committed
203
204
}

205
struct hip_triadd : ternary_device<hip_triadd, &device::add>
Paul's avatar
Paul committed
206
207
{
};
208
MIGRAPHX_REGISTER_OP(hip_triadd)
Paul's avatar
Paul committed
209

210
struct hip_triadd_clip : quinary_device<hip_triadd_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
211
212
{
};
213
MIGRAPHX_REGISTER_OP(hip_triadd_clip)
kahmed10's avatar
kahmed10 committed
214

215
struct hip_add_clip : quaternary_device<hip_add_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
216
217
{
};
218
MIGRAPHX_REGISTER_OP(hip_add_clip)
kahmed10's avatar
kahmed10 committed
219

220
struct hip_triadd_relu : ternary_device<hip_triadd_relu, &device::add_relu>
Paul's avatar
Paul committed
221
222
{
};
223
MIGRAPHX_REGISTER_OP(hip_triadd_relu)
Paul's avatar
Paul committed
224

225
226
227
struct hip_triadd_sigmoid : ternary_device<hip_triadd_sigmoid, &device::add_sigmoid>
{
};
228
MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid)
229
230
231
232

struct hip_triadd_tanh : ternary_device<hip_triadd_tanh, &device::add_tanh>
{
};
233
MIGRAPHX_REGISTER_OP(hip_triadd_tanh)
234
235
236
237

struct hip_add_relu : binary_device<hip_add_relu, &device::add_relu>
{
};
238
MIGRAPHX_REGISTER_OP(hip_add_relu)
239
240
241
242

struct hip_add_sigmoid : binary_device<hip_add_relu, &device::add_sigmoid>
{
};
243
MIGRAPHX_REGISTER_OP(hip_add_sigmoid)
244
245

struct hip_add_tanh : binary_device<hip_add_tanh, &device::add_tanh>
Paul's avatar
Paul committed
246
247
{
};
248
MIGRAPHX_REGISTER_OP(hip_add_tanh)
Paul's avatar
Paul committed
249

kahmed10's avatar
kahmed10 committed
250
251
struct hip_layernorm : unary_device<hip_layernorm, &device::layernorm>
{
252
253
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
kahmed10's avatar
kahmed10 committed
254
};
255
MIGRAPHX_REGISTER_OP(hip_layernorm)
kahmed10's avatar
kahmed10 committed
256

Paul Fultz II's avatar
Paul Fultz II committed
257
258
struct hip_triadd_layernorm : ternary_device<hip_triadd_layernorm, &device::triadd_layernorm>
{
259
260
261
262
263
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(4).standard();
        return inputs[0];
    }
Paul Fultz II's avatar
Paul Fultz II committed
264
265
266
267
268
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
};
MIGRAPHX_REGISTER_OP(hip_triadd_layernorm)

kahmed10's avatar
kahmed10 committed
269
270
271
struct hip_gelu : unary_device<hip_gelu, &device::gelu>
{
};
272
MIGRAPHX_REGISTER_OP(hip_gelu)
kahmed10's avatar
kahmed10 committed
273
274
275
276

struct hip_add_gelu : binary_device<hip_add_gelu, &device::add_gelu>
{
};
277
MIGRAPHX_REGISTER_OP(hip_add_gelu)
kahmed10's avatar
kahmed10 committed
278
279
280
281

struct hip_gelu_new : unary_device<hip_gelu_new, &device::gelu_new>
{
};
282
MIGRAPHX_REGISTER_OP(hip_gelu_new)
kahmed10's avatar
kahmed10 committed
283
284
285
286

struct hip_add_gelu_new : binary_device<hip_add_gelu_new, &device::add_gelu_new>
{
};
287
MIGRAPHX_REGISTER_OP(hip_add_gelu_new)
kahmed10's avatar
kahmed10 committed
288

289
struct hip_mul_add : ternary_device<hip_mul_add, &device::mul_add>
Paul's avatar
Paul committed
290
291
{
};
292
MIGRAPHX_REGISTER_OP(hip_mul_add)
Paul's avatar
Paul committed
293

294
struct hip_mul_add_relu : ternary_device<hip_mul_add_relu, &device::mul_add_relu>
Paul's avatar
Paul committed
295
296
{
};
297
MIGRAPHX_REGISTER_OP(hip_mul_add_relu)
Paul's avatar
Paul committed
298

Paul's avatar
Paul committed
299
300
301
void move_broadcasted_back(std::vector<instruction_ref>& args)
{
    // Ensure the last arguments is the broadcasted one
Paul's avatar
Paul committed
302
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
303
304
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); });
Paul's avatar
Paul committed
305
306
    if(it != last)
        std::swap(*it, *std::prev(last));
Paul's avatar
Paul committed
307
308
309
310
311
}

void move_standard_front(std::vector<instruction_ref>& args)
{
    // Ensure the first arguments is the standard one
Paul's avatar
Paul committed
312
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
313
314
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); });
Paul's avatar
Paul committed
315
    if(it != last)
Paul's avatar
Paul committed
316
317
318
        std::swap(*it, args.front());
}

319
320
auto gpu_name(const std::string& s) { return match::name("gpu::" + s); }

kahmed10's avatar
kahmed10 committed
321
322
struct find_layernorm
{
323
    auto matcher() const { return match::layernorm(&gpu_name); }
kahmed10's avatar
kahmed10 committed
324

325
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
326
327
328
329
330
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

331
332
333
334
335
336
337
338
339
        // We dont fuse for non-standard layouts
        if(not x_ins->get_shape().standard())
            return;

        auto relements = x_ins->get_shape().lens().back();

        if(relements > 1024 or (relements % 4 != 0 and relements > 256))
            return;

340
        m.replace_instruction(ins, hip_layernorm{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
341
342
343
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
344
345
346
347
348
349
350
351
struct find_triadd_layernorm
{
    auto matcher() const
    {
        return match::name("gpu::layernorm")(match::arg(0)(match::name("gpu::triadd")(
            match::used_once(), match::all_of[match::inputs()](match::standard_shape()))));
    }

352
    void apply(module& m, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
353
354
355
    {
        auto ins    = r.result;
        auto triadd = ins->inputs().front();
356
        m.replace_instruction(ins, hip_triadd_layernorm{}, triadd->inputs());
Paul Fultz II's avatar
Paul Fultz II committed
357
358
359
    }
};

kahmed10's avatar
kahmed10 committed
360
361
struct find_gelu
{
362
    auto matcher() const { return match::gelu_erf(&gpu_name); }
kahmed10's avatar
kahmed10 committed
363

364
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
365
366
367
368
369
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

370
        m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
371
372
373
374
375
376
377
378
379
380
    }
};

struct find_add_gelu
{
    auto matcher() const
    {
        return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

381
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
382
383
384
385
386
387
388
389
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
390
        m.replace_instruction(ins, hip_add_gelu{}, args);
kahmed10's avatar
kahmed10 committed
391
392
393
394
395
    }
};

struct find_gelu_new
{
kahmed10's avatar
kahmed10 committed
396
    bool fast_math = true;
kahmed10's avatar
kahmed10 committed
397

398
    auto matcher() const { return match::gelu_tanh(&gpu_name); }
kahmed10's avatar
kahmed10 committed
399

400
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
401
402
403
404
405
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

Paul Fultz II's avatar
Paul Fultz II committed
406
        if(fast_math)
407
            m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
Paul Fultz II's avatar
Paul Fultz II committed
408
        else
409
            m.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
410
411
412
413
414
415
416
417
418
419
    }
};

struct find_add_gelu_new
{
    auto matcher() const
    {
        return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

420
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
421
422
423
424
425
426
427
428
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
429
        m.replace_instruction(ins, hip_add_gelu_new{}, args);
kahmed10's avatar
kahmed10 committed
430
431
432
    }
};

kahmed10's avatar
kahmed10 committed
433
434
435
436
437
438
struct find_add_clip
{
    auto matcher() const
    {
        return match::name(std::unordered_set<std::string>{"gpu::clip", "gpu::clipped_relu"})(
            match::arg(0)(match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
439
                                        match::name("gpu::triadd"),
kahmed10's avatar
kahmed10 committed
440
441
442
443
                                        match::any_of[match::inputs()](match::standard_shape()))
                              .bind("add")));
    }

444
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
445
    {
kahmed10's avatar
kahmed10 committed
446
447
448
449
450
451
452
453
454
455
        auto add_ins  = r.instructions["add"];
        auto ins      = r.result;
        auto ins_args = ins->inputs();
        auto add_args = add_ins->inputs();
        move_standard_front(add_args);
        move_broadcasted_back(add_args);

        // Use the allocation from the clip operator
        add_args.pop_back();
        add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end());
kahmed10's avatar
kahmed10 committed
456
        if(add_ins->name() == "gpu::add")
457
            m.replace_instruction(ins, hip_add_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
458
        else if(add_ins->name() == "gpu::triadd")
459
            m.replace_instruction(ins, hip_triadd_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
460
461
462
    }
};

463
struct find_add_unary
Paul's avatar
Paul committed
464
{
465
466
467
    std::string op_name;
    operation binary_add_op;
    operation ternary_add_op;
Paul's avatar
Paul committed
468
469
    auto matcher() const
    {
470
        return match::name(op_name)(match::arg(0)(
Paul's avatar
Paul committed
471
            match::used_once(),
Paul's avatar
Paul committed
472
            match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
473
                          match::name("gpu::triadd"),
Paul's avatar
Paul committed
474
475
476
                          match::any_of(match::name("@literal"),
                                        match::any_of[match::inputs()](match::standard_shape())))
                .bind("add")));
Paul's avatar
Paul committed
477
    }
Paul's avatar
Paul committed
478

479
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
480
    {
Paul's avatar
Paul committed
481
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
482
483
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
484
485
486
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
487
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
488
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
489
        if(add_ins->name() == "gpu::add")
490
            m.replace_instruction(ins, binary_add_op, args);
kahmed10's avatar
kahmed10 committed
491
        else if(add_ins->name() == "gpu::triadd")
492
            m.replace_instruction(ins, ternary_add_op, args);
Paul's avatar
Paul committed
493
494
495
    }
};

Paul's avatar
Paul committed
496
struct find_triadd
Paul's avatar
Paul committed
497
498
499
{
    auto matcher() const
    {
Paul's avatar
Paul committed
500
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
501
            match::name("gpu::add")(match::used_once()).bind("add"),
Paul's avatar
Paul committed
502
503
504
            match::any(match::any_of(match::name("@literal"),
                                     match::any_of[match::inputs()](match::standard_shape())))
                .bind("input")));
Paul's avatar
Paul committed
505
506
    }

507
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
508
    {
Paul's avatar
Paul committed
509
510
511
512
        auto add_ins   = r.instructions["add"];
        auto input_ins = r.instructions["input"];
        auto ins       = r.result;
        auto args      = add_ins->inputs();
513

Paul's avatar
Paul committed
514
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
515
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2)
Paul's avatar
Paul committed
516
517
            return;
        args.insert(args.begin(), input_ins);
Paul's avatar
Paul committed
518
519
520
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
521
        args.back() = ins->inputs().back();
522
        m.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
523
    }
Paul's avatar
Paul committed
524
525
};

Paul's avatar
Paul committed
526
527
528
529
struct find_mul_add
{
    auto matcher() const
    {
Paul's avatar
Paul committed
530
531
        return match::name("gpu::add")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b")));
Paul's avatar
Paul committed
532
533
    }

534
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
535
    {
Paul's avatar
Paul committed
536
537
538
539
        auto mul_ins = r.instructions["mul"];
        auto b_ins   = r.instructions["b"];
        auto ins     = r.result;
        auto args    = mul_ins->inputs();
Paul's avatar
Paul committed
540
541
542
543
544
545
546
        assert(mul_ins != b_ins);

        move_standard_front(args);
        move_broadcasted_back(args);
        args.insert(std::prev(args.end()), b_ins);

        args.back() = ins->inputs().back();
547
        m.replace_instruction(ins, hip_mul_add{}, args);
Paul's avatar
Paul committed
548
549
550
    }
};

Paul's avatar
Paul committed
551
552
553
554
struct find_mul_add_relu
{
    auto matcher() const
    {
Paul's avatar
Paul committed
555
        return match::name("gpu::relu")(
kahmed10's avatar
kahmed10 committed
556
            match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add")));
Paul's avatar
Paul committed
557
558
    }

559
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
560
561
    {
        auto mul_add_ins = r.instructions["mul_add"];
Paul's avatar
Paul committed
562
563
        auto ins         = r.result;
        auto args        = mul_add_ins->inputs();
Paul's avatar
Paul committed
564
565
566

        // Use the allocation from the relu operator
        args.back() = ins->inputs().back();
567
        m.replace_instruction(ins, hip_mul_add_relu{}, args);
Paul's avatar
Paul committed
568
569
570
    }
};

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
struct miopen_fusion
{
    struct fuse_op_data
    {
        operation op;
        float alpha = 1;
        float beta  = 0;
    };
    struct fuse_op : fuse_op_data, reflect_equality<fuse_op>, reflect_stream<fuse_op>
    {
        template <class Self, class F>
        static auto reflect(Self& self, F f)
        {
            return pack(f(self.op, "op"), f(self.alpha, "alpha"), f(self.beta, "beta"));
        }
    };
    std::vector<fuse_op> ops = {};
    fusion f                 = {};
    std::function<void(context&, const fusion&, const std::vector<argument>&)> execute;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.ops, "ops"));
    }

596
597
598
599
600
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
    value compile(context& ctx, const shape&, std::vector<shape> inputs)
    {
        // Compensate for allocation
        inputs.pop_back();
        std::size_t i = 0;
        f             = fusion(inputs[i]);
        i++;
        std::vector<std::function<void(const fused_operator_args&, const std::vector<argument>&)>>
            invokers;
        for(auto&& fop : ops)
        {
            if(i > inputs.size())
            {
                f = {};
                return {};
            }
            if(fop.op.name() == "convolution")
            {
                auto* mop = f.create_conv(any_cast<op::convolution>(fop.op), inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsConvForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "add")
            {
                auto* mop = f.create_bias(inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsBiasForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "relu")
            {
                auto* mop = f.create_relu();
                invokers.push_back([=](const fused_operator_args& fargs,
                                       const std::vector<argument>&) {
                    miopenSetOpArgsActivForward(fargs.get(), mop, &fop.alpha, &fop.beta, 0, 0, 0);
                });
            }
            else
            {
                f = {};
                return {};
            }
        }
        if(not f.compile(ctx))
        {
            f = {};
            return {};
        }
        execute = [invokers](context& c, const fusion& ff, const std::vector<argument>& args) {
            auto fargs = make_fused_args();
            for(auto&& invoker : invokers)
                invoker(fargs, args);
            ff.execute(c, fargs, args.front(), args.back());
        };
        return {{"workspace", f.get_workspace(ctx).bytes()}};
    }
    void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
    {
        if(not f.empty())
            return;
        auto v = compile(ctx, output_shape, inputs);
        if(not v.is_object())
            MIGRAPHX_THROW("Failed to compile fusion plan");
    }
    std::string name() const { return "gpu::miopen_fusion"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(ops.empty())
            return {};
        // TODO: Check number of arguments
        return ops.front().op.compute_shape({inputs[0], inputs[1]});
    }
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
    {
        execute(ctx, f, args);
        return args.back();
    }
};

Paul's avatar
Paul committed
687
688
689
struct miopen_conv_bias
{
    op::convolution op;
690
    fusion fp         = {};
691
692
    fusion::op_t conv = {};
    fusion::op_t bias = {};
Paul's avatar
Paul committed
693

Paul's avatar
Paul committed
694
695
696
697
698
699
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Paul committed
700
701
702
703
704
    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
705
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Paul committed
706
    }
Paul's avatar
Paul committed
707
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
708
    {
Paul's avatar
Paul committed
709
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
710
        float alpha = 1;
Paul's avatar
Paul committed
711
        float beta  = 0;
Paul's avatar
Paul committed
712
713
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
714
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
715
716
    }

717
718
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
719
720
721
722
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        if(not fp.compile(ctx))
723
            MIGRAPHX_THROW("Failed to compile fusion plan");
724
725
    }

726
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
727
728
729
730
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Paul committed
731
};
732
MIGRAPHX_REGISTER_OP(miopen_conv_bias)
Paul's avatar
Paul committed
733

Paul's avatar
Add cbr  
Paul committed
734
735
736
struct miopen_conv_bias_relu
{
    op::convolution op;
737
    fusion fp         = {};
738
739
740
    fusion::op_t conv = {};
    fusion::op_t bias = {};
    fusion::op_t relu = {};
Paul's avatar
Add cbr  
Paul committed
741

Paul's avatar
Paul committed
742
743
744
745
746
747
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Add cbr  
Paul committed
748
749
750
751
752
    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
753
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Add cbr  
Paul committed
754
    }
Paul's avatar
Paul committed
755
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
756
757
    {
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
758
        float alpha = 1;
Paul's avatar
Paul committed
759
        float beta  = 0;
Paul's avatar
Add cbr  
Paul committed
760
761
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
762
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
763
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
764
    }
765
766
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
767
768
769
770
771
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        relu = fp.create_relu();
        fp.compile(ctx);
772
773
    }

774
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
775
776
777
778
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Add cbr  
Paul committed
779
};
780
MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu)
Paul's avatar
Add cbr  
Paul committed
781

Paul's avatar
Paul committed
782
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
783
784
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
785
    return match::name("gpu::add")(
Paul's avatar
Paul committed
786
787
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
788
        ms...);
Paul's avatar
Paul committed
789
790
}

Paul's avatar
Paul committed
791
template <class Op>
792
void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
Paul's avatar
Paul committed
793
794
795
796
797
798
799
800
801
802
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

803
    Op cb{conv_op};
Paul's avatar
Paul committed
804
    // TODO: Insert ws allocation
Paul's avatar
Paul committed
805
    auto ws = cb.get_workspace(ctx);
Paul's avatar
Paul committed
806
    (void)ws;
807
    m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
808
809
}

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
inline auto precompile_name(std::string s) // NOLINT
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(ins->name() != "gpu::precompile_op")
            return false;
        auto op = from_value<operation>(ins->get_operator().to_value().at("op"));
        return (op.name() == s);
    });
}

template <class... Ms>
auto conv_bias_pointwise(Ms... ms)
{
    return precompile_name("pointwise")(
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
        ms...);
}

Paul's avatar
Paul committed
829
struct find_conv_bias
Paul's avatar
Paul committed
830
{
Paul's avatar
Paul committed
831
    context* ctx = nullptr;
Paul's avatar
Paul committed
832
833
    auto matcher() const
    {
kahmed10's avatar
kahmed10 committed
834
835
        return conv_bias(match::none_of(
            match::output(match::name(std::unordered_set<std::string>{"gpu::relu"}))));
Paul's avatar
Paul committed
836
837
    }

838
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
839
    {
840
        apply_conv_bias<miopen_conv_bias>(*ctx, m, r);
Paul's avatar
Paul committed
841
842
843
    }
};

Paul's avatar
Paul committed
844
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
845
846
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
847
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
848

849
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Add cbr  
Paul committed
850
    {
851
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, m, r);
Paul's avatar
Add cbr  
Paul committed
852
853
    }
};
854

855
856
857
858
859
860
861
862
863
864
865
struct find_conv_pointwise
{
    context* ctx = nullptr;
    auto matcher() const
    {
        return precompile_name("pointwise")(
            match::nargs(3),
            match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                    fusable_conv(match::used_once()).bind("conv")));
    }

866
    void apply(module& m, const match::matcher_result& r) const
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
    {
        auto conv_ins    = r.instructions["conv"];
        auto bias_ins    = r.instructions["bias"];
        auto ins         = r.result;
        auto input_ins   = conv_ins->inputs().at(0);
        auto weights_ins = conv_ins->inputs().at(1);
        auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto alloc_ins   = ins->inputs().back();

        module_ref pm = ins->module_inputs().front();

        miopen_fusion op{};
        op.ops.push_back({{conv_op}});
        for(auto&& i : *pm)
        {
            if(i.name()[0] == '@')
                continue;
            op.ops.push_back({{i.get_operator()}});
        }
        std::vector<instruction_ref> inputs = {input_ins, weights_ins, bias_ins, alloc_ins};
        auto v                              = op.compile(*ctx, ins->get_shape(), to_shapes(inputs));
        if(not v.is_object())
            return;
        m.replace_instruction(ins, op, inputs);
    }
};

894
895
896
897
898
899
900
901
902
903
struct find_gemm_add
{
    auto matcher() const
    {
        return match::name("gpu::add")(
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

904
    void apply(module& m, const match::matcher_result& r) const
905
906
907
908
909
910
911
912
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
913
        if(not float_equal(gemm.beta, 0))
914
915
916
917
918
919
920
921
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
922
        if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
923
        {
924
            copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
925
926
927
928
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

929
        gemm.beta = 1;
930
        m.replace_instruction(ins, gemm, inputs);
931
932
933
    }
};

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
auto pointwise_name(const std::string& s)
{
    return precompile_name("pointwise")(match::make_basic_pred_matcher([=](auto ins) {
        module_ref pm = ins->module_inputs().front();
        auto n = std::count_if(pm->begin(), pm->end(), [&](auto& i) { return i.name() == s; });
        if(n != 1)
            return false;
        return std::all_of(pm->begin(), pm->end(), [&](auto& i) {
            return starts_with(i.name(), "@") or i.name() == s;
        });
    }));
}

struct find_gemm_pointwise
{
    auto matcher() const
    {
Paul's avatar
Paul committed
951
        return precompile_name("pointwise")(
952
953
954
955
956
957
            match::nargs(3),
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

Paul's avatar
Paul committed
958
959
960
961
    // TODO: Move to matcher.hpp
    static auto match_param(const std::string& name)
    {
        return match::make_basic_pred_matcher([=](auto ins) {
Paul's avatar
Format  
Paul committed
962
            if(ins->name() != "@param")
Paul's avatar
Paul committed
963
964
965
966
967
968
                return false;
            auto p = any_cast<builtin::param>(ins->get_operator());
            return p.parameter == name;
        });
    }

Paul's avatar
Format  
Paul committed
969
    template <class M>
Paul's avatar
Paul committed
970
971
    static auto match_mul_const(M m, const std::string& var)
    {
Paul's avatar
Format  
Paul committed
972
973
        return match::name("mul")(match::either_arg(0, 1)(match::name("@literal").bind(var), m))
            .bind(var + "_mul");
Paul's avatar
Paul committed
974
975
976
977
    }

    static auto match_add(const std::string& input, const std::string& output)
    {
Paul's avatar
Format  
Paul committed
978
979
980
981
982
983
        auto param     = match::name("@param");
        auto add       = match::name("add")(match::args(param, param));
        auto inner_mul = match::any_of(match_mul_const(match_param(input), "alpha"),
                                       match_mul_const(match_param(output), "beta"));
        auto mul_add   = match::name("add")(match::either_arg(0, 1)(inner_mul, param));
        auto add_mul   = match_mul_const(add, "gamma");
Paul's avatar
Paul committed
984
985
986
        return match::name("@return")(match::args(match::any_of(add, mul_add, add_mul)));
    }

Paul's avatar
Format  
Paul committed
987
    static float get_float(instruction_ref ins) { return ins->get_literal().at<float>(); }
Paul's avatar
Paul committed
988

Paul's avatar
Format  
Paul committed
989
    template <class Gemm>
Paul's avatar
Paul committed
990
991
992
993
994
995
996
    static bool update_gemm(Gemm& gemm, module_ref pm, unsigned input)
    {
        auto names = pm->get_parameter_names();
        if(names.size() != 2)
            return false;
        std::sort(names.begin(), names.end());
        unsigned output = input == 0 ? 1 : 0;
Paul's avatar
Format  
Paul committed
997
998
999
        auto mr         = match::match_instruction(
            *pm, std::prev(pm->end()), match_add(names[input], names[output]));
        if(mr.result == pm->end())
Paul's avatar
Paul committed
1000
            return false;
Paul's avatar
Format  
Paul committed
1001
        if(contains(mr.instructions, "alpha_mul"))
Paul's avatar
Paul committed
1002
            gemm.alpha *= get_float(mr.instructions["alpha"]);
Paul's avatar
Format  
Paul committed
1003
        else if(contains(mr.instructions, "beta_mul"))
Paul's avatar
Paul committed
1004
            gemm.beta *= get_float(mr.instructions["beta"]);
Paul's avatar
Format  
Paul committed
1005
        else if(contains(mr.instructions, "gamma_mul"))
Paul's avatar
Paul committed
1006
1007
1008
1009
1010
1011
1012
        {
            gemm.alpha *= get_float(mr.instructions["gamma"]);
            gemm.beta *= get_float(mr.instructions["gamma"]);
        }
        return true;
    }

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
        if(not float_equal(gemm.beta, 0))
            return;
Paul's avatar
Paul committed
1024
1025
        gemm.beta = 1;

Paul's avatar
Format  
Paul committed
1026
1027
        if(not update_gemm(
               gemm, ins->module_inputs().front(), ins->inputs().front() == gemm_ins ? 0 : 1))
Paul's avatar
Paul committed
1028
            return;
1029
1030
1031
1032
1033

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        inputs.push_back(c_ins);
1034
        inputs.push_back(ins->inputs().back());
1035
1036
1037
1038
1039

        m.replace_instruction(ins, gemm, inputs);
    }
};

1040
1041
1042
1043
1044
1045
1046
struct find_commutative_broadcast
{
    auto matcher() const
    {
        return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape()));
    }

1047
    void apply(module& m, const match::matcher_result& r) const
1048
1049
1050
1051
1052
    {
        auto ins  = r.result;
        auto args = ins->inputs();
        move_broadcasted_back(args);

1053
        m.replace_instruction(ins, ins->get_operator(), args);
1054
1055
1056
    }
};

Paul's avatar
Paul committed
1057
1058
struct find_contiguous
{
Paul's avatar
Format  
Paul committed
1059
    auto matcher() const { return match::name("gpu::contiguous"); }
Paul's avatar
Paul committed
1060
1061
1062

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
1063
        auto ins = r.result;
Paul's avatar
Paul committed
1064

Paul's avatar
Format  
Paul committed
1065
1066
1067
1068
        m.replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(make_op("contiguous"))}}),
            ins->inputs());
Paul's avatar
Paul committed
1069
1070
1071
    }
};

Paul's avatar
Paul committed
1072
1073
struct find_contiguous_pointwise
{
Paul's avatar
Format  
Paul committed
1074
1075
1076
    auto matcher() const
    {
        return match::name("gpu::contiguous")(match::arg(0)(precompile_name("pointwise")));
Paul's avatar
Paul committed
1077
1078
1079
1080
    }

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
1081
1082
1083
1084
        auto ins    = r.result;
        auto pw     = ins->inputs().front();
        auto alloc  = ins->inputs().back();
        auto args   = pw->inputs();
Paul's avatar
Paul committed
1085
1086
1087
1088
1089
1090
        args.back() = alloc;

        m.replace_instruction(ins, pw->get_operator(), args, pw->module_inputs());
    }
};

1091
void fuse_ops::apply(module& m) const
Paul's avatar
Paul committed
1092
{
Paul's avatar
Paul committed
1093
    match::find_matches(m, find_contiguous_pointwise{}, find_gelu{}, find_gelu_new{fast_math});
1094
1095
1096
    run_passes(m, {dead_code_elimination{}});
    match::find_matches(m, find_triadd{});
    match::find_matches(m,
kahmed10's avatar
kahmed10 committed
1097
                        find_layernorm{},
1098
                        find_conv_pointwise{ctx},
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
                        find_conv_bias_relu{ctx},
                        find_conv_bias{ctx},
                        find_add_gelu{},
                        find_add_gelu_new{},
                        find_mul_add{},
                        find_mul_add_relu{},
                        find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}},
                        find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}},
                        find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}},
                        find_add_clip{});
1109
    run_passes(m, {dead_code_elimination{}});
1110
1111
1112
1113
1114
    match::find_matches(m,
                        find_triadd_layernorm{},
                        find_gemm_add{},
                        find_gemm_pointwise{},
                        find_commutative_broadcast{});
Paul's avatar
Paul committed
1115
    match::find_matches(m, find_contiguous{});
Paul's avatar
Paul committed
1116
}
Paul's avatar
Paul committed
1117
1118

} // namespace gpu
Paul's avatar
Paul committed
1119
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1120
} // namespace migraphx