fuse_ops.cpp 30.7 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
4
5
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
kahmed10's avatar
kahmed10 committed
6
#include <migraphx/gpu/clip.hpp>
Paul's avatar
Paul committed
7
#include <migraphx/gpu/convolution.hpp>
8
#include <migraphx/gpu/device_name.hpp>
9
#include <migraphx/gpu/oper.hpp>
kahmed10's avatar
kahmed10 committed
10
11
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/mul.hpp>
12
#include <migraphx/gpu/gemm.hpp>
kahmed10's avatar
kahmed10 committed
13
#include <migraphx/gpu/device/layernorm.hpp>
kahmed10's avatar
kahmed10 committed
14
#include <migraphx/gpu/device/gelu.hpp>
Paul's avatar
Paul committed
15
#include <migraphx/gpu/device/mul_add.hpp>
16
17
18
19
20
#include <migraphx/gpu/device/add_clip.hpp>
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/add_tanh.hpp>
#include <migraphx/gpu/device/mul_add_relu.hpp>
Paul's avatar
Paul committed
21
#include <migraphx/gpu/device/add.hpp>
22
23
24
#include <migraphx/match/layernorm.hpp>
#include <migraphx/match/gelu_erf.hpp>
#include <migraphx/match/gelu_tanh.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/instruction.hpp>
26
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
27
#include <migraphx/array.hpp>
Paul's avatar
Paul committed
28
#include <migraphx/make_op.hpp>
kahmed10's avatar
kahmed10 committed
29
#include <migraphx/op/clip.hpp>
kahmed10's avatar
kahmed10 committed
30
#include <cmath>
31
#include <set>
Paul's avatar
Paul committed
32
33

namespace migraphx {
Paul's avatar
Paul committed
34
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
35
36
namespace gpu {

37
38
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION)

Paul's avatar
Paul committed
39
40
41
42
43
44
45
46
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
47
    template <class T>
Paul's avatar
Paul committed
48
49
50
51
52
53
54
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

55
56
    fusion() = default;

Paul's avatar
Paul committed
57
58
    fusion(const shape& input)
    {
59
        assert(input.standard());
Paul's avatar
Paul committed
60
        auto t = make_tensor(input);
Paul's avatar
Paul committed
61
        fp     = make_fusion_plan(t);
62
        assert(fp);
Paul's avatar
Paul committed
63
64
65
        keep_alive(std::move(t));
    }

66
67
    bool empty() const { return fp == nullptr; }

Paul's avatar
Paul committed
68
69
    op_t operator[](std::size_t i) const
    {
70
        assert(fp);
Paul's avatar
Paul committed
71
72
73
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
74
            MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i));
Paul's avatar
Paul committed
75
76
77
        return result;
    }

78
79
80
81
82
    auto get() const
    {
        assert(fp);
        return fp.get();
    }
Paul's avatar
Paul committed
83
84
85

    op_t create_bias(const shape& bias)
    {
86
        assert(fp);
Paul's avatar
Paul committed
87
        op_t result;
Paul's avatar
Paul committed
88
89
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
90
91
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
92
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
93
94
95
96
97
        return result;
    }

    op_t create_relu()
    {
98
        assert(fp);
Paul's avatar
Paul committed
99
100
101
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
102
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
103
104
105
106
107
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
108
        assert(fp);
Paul's avatar
Paul committed
109
        op_t result;
Paul's avatar
Paul committed
110
111
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
112
113
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
114
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
115
116
        return result;
    }
Paul's avatar
Paul committed
117
118
119

    shape get_workspace(context&)
    {
120
        // assert(fp);
Paul's avatar
Paul committed
121
122
123
124
125
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
126
127
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
128
129
130
        return shape{shape::int8_type, {ws_size}};
    }

131
    bool compile(context& ctx)
Paul's avatar
Paul committed
132
    {
133
        assert(fp);
134
135
        return miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get()) ==
               miopenStatusSuccess;
Paul's avatar
Paul committed
136
137
    }

Paul's avatar
Paul committed
138
139
140
141
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
142
    {
143
        assert(fp);
Paul's avatar
Paul committed
144
145
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
146
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
147
148
149
150
151
152
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
153
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
154
            MIGRAPHX_THROW("Failed to execute fusion plan");
Paul's avatar
Paul committed
155
156
        return y;
    }
Paul's avatar
Paul committed
157
158
};

159
160
161
162
163
164
const std::unordered_set<std::string>& get_supported_archs()
{
    static std::unordered_set<std::string> supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"};
    return supported_archs;
}

Paul's avatar
Paul committed
165
MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
Paul's avatar
Paul committed
166
167
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
168
169
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
170
171
}

Paul's avatar
Paul committed
172
MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
Paul's avatar
Paul committed
173
{
174
    const auto device_name = trim(split_string(get_device_name(), ':').front());
175
176
    if(not contains(get_supported_archs(), device_name))
        return false;
177
178
    if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{}))
        return false;
Paul's avatar
Paul committed
179
180
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
181
182
    if(ins->get_shape().type() != shape::float_type)
        return false;
Paul's avatar
Paul committed
183
184
185
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
Khalique's avatar
Khalique committed
186
    if(conv.op.group > 1)
Khalique's avatar
Khalique committed
187
        return false;
Paul's avatar
Paul committed
188
    if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
Paul's avatar
Paul committed
189
        return false;
190
191
192
193
194
195

    // Do not fuse non-symmetric input
    auto input_lens = ins->inputs().at(0)->get_shape().lens();
    if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
        return false;

Paul's avatar
Paul committed
196
    auto op = conv.op;
197
198
    // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
    if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
199
       wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
200
        return false;
kahmed10's avatar
kahmed10 committed
201
    return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and
202
           contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
Paul's avatar
Paul committed
203
204
}

205
struct hip_triadd : ternary_device<hip_triadd, &device::add>
Paul's avatar
Paul committed
206
207
{
};
208
MIGRAPHX_REGISTER_OP(hip_triadd)
Paul's avatar
Paul committed
209

210
struct hip_triadd_clip : quinary_device<hip_triadd_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
211
212
{
};
213
MIGRAPHX_REGISTER_OP(hip_triadd_clip)
kahmed10's avatar
kahmed10 committed
214

215
struct hip_add_clip : quaternary_device<hip_add_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
216
217
{
};
218
MIGRAPHX_REGISTER_OP(hip_add_clip)
kahmed10's avatar
kahmed10 committed
219

220
struct hip_triadd_relu : ternary_device<hip_triadd_relu, &device::add_relu>
Paul's avatar
Paul committed
221
222
{
};
223
MIGRAPHX_REGISTER_OP(hip_triadd_relu)
Paul's avatar
Paul committed
224

225
226
227
struct hip_triadd_sigmoid : ternary_device<hip_triadd_sigmoid, &device::add_sigmoid>
{
};
228
MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid)
229
230
231
232

struct hip_triadd_tanh : ternary_device<hip_triadd_tanh, &device::add_tanh>
{
};
233
MIGRAPHX_REGISTER_OP(hip_triadd_tanh)
234
235
236
237

struct hip_add_relu : binary_device<hip_add_relu, &device::add_relu>
{
};
238
MIGRAPHX_REGISTER_OP(hip_add_relu)
239
240
241
242

struct hip_add_sigmoid : binary_device<hip_add_relu, &device::add_sigmoid>
{
};
243
MIGRAPHX_REGISTER_OP(hip_add_sigmoid)
244
245

struct hip_add_tanh : binary_device<hip_add_tanh, &device::add_tanh>
Paul's avatar
Paul committed
246
247
{
};
248
MIGRAPHX_REGISTER_OP(hip_add_tanh)
Paul's avatar
Paul committed
249

kahmed10's avatar
kahmed10 committed
250
251
struct hip_layernorm : unary_device<hip_layernorm, &device::layernorm>
{
252
253
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
kahmed10's avatar
kahmed10 committed
254
};
255
MIGRAPHX_REGISTER_OP(hip_layernorm)
kahmed10's avatar
kahmed10 committed
256

Paul Fultz II's avatar
Paul Fultz II committed
257
258
259
260
261
262
263
struct hip_triadd_layernorm : ternary_device<hip_triadd_layernorm, &device::triadd_layernorm>
{
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
};
MIGRAPHX_REGISTER_OP(hip_triadd_layernorm)

kahmed10's avatar
kahmed10 committed
264
265
266
struct hip_gelu : unary_device<hip_gelu, &device::gelu>
{
};
267
MIGRAPHX_REGISTER_OP(hip_gelu)
kahmed10's avatar
kahmed10 committed
268
269
270
271

struct hip_add_gelu : binary_device<hip_add_gelu, &device::add_gelu>
{
};
272
MIGRAPHX_REGISTER_OP(hip_add_gelu)
kahmed10's avatar
kahmed10 committed
273
274
275
276

struct hip_gelu_new : unary_device<hip_gelu_new, &device::gelu_new>
{
};
277
MIGRAPHX_REGISTER_OP(hip_gelu_new)
kahmed10's avatar
kahmed10 committed
278
279
280
281

struct hip_add_gelu_new : binary_device<hip_add_gelu_new, &device::add_gelu_new>
{
};
282
MIGRAPHX_REGISTER_OP(hip_add_gelu_new)
kahmed10's avatar
kahmed10 committed
283

284
struct hip_mul_add : ternary_device<hip_mul_add, &device::mul_add>
Paul's avatar
Paul committed
285
286
{
};
287
MIGRAPHX_REGISTER_OP(hip_mul_add)
Paul's avatar
Paul committed
288

289
struct hip_mul_add_relu : ternary_device<hip_mul_add_relu, &device::mul_add_relu>
Paul's avatar
Paul committed
290
291
{
};
292
MIGRAPHX_REGISTER_OP(hip_mul_add_relu)
Paul's avatar
Paul committed
293

Paul's avatar
Paul committed
294
295
296
void move_broadcasted_back(std::vector<instruction_ref>& args)
{
    // Ensure the last arguments is the broadcasted one
Paul's avatar
Paul committed
297
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
298
299
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); });
Paul's avatar
Paul committed
300
301
    if(it != last)
        std::swap(*it, *std::prev(last));
Paul's avatar
Paul committed
302
303
304
305
306
}

void move_standard_front(std::vector<instruction_ref>& args)
{
    // Ensure the first arguments is the standard one
Paul's avatar
Paul committed
307
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
308
309
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); });
Paul's avatar
Paul committed
310
    if(it != last)
Paul's avatar
Paul committed
311
312
313
        std::swap(*it, args.front());
}

314
315
auto gpu_name(const std::string& s) { return match::name("gpu::" + s); }

kahmed10's avatar
kahmed10 committed
316
317
struct find_layernorm
{
318
    auto matcher() const { return match::layernorm(&gpu_name); }
kahmed10's avatar
kahmed10 committed
319

320
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
321
322
323
324
325
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

326
327
328
329
330
331
332
333
334
        // We dont fuse for non-standard layouts
        if(not x_ins->get_shape().standard())
            return;

        auto relements = x_ins->get_shape().lens().back();

        if(relements > 1024 or (relements % 4 != 0 and relements > 256))
            return;

335
        m.replace_instruction(ins, hip_layernorm{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
336
337
338
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
339
340
341
342
343
344
345
346
struct find_triadd_layernorm
{
    auto matcher() const
    {
        return match::name("gpu::layernorm")(match::arg(0)(match::name("gpu::triadd")(
            match::used_once(), match::all_of[match::inputs()](match::standard_shape()))));
    }

347
    void apply(module& m, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
348
349
350
    {
        auto ins    = r.result;
        auto triadd = ins->inputs().front();
351
        m.replace_instruction(ins, hip_triadd_layernorm{}, triadd->inputs());
Paul Fultz II's avatar
Paul Fultz II committed
352
353
354
    }
};

kahmed10's avatar
kahmed10 committed
355
356
struct find_gelu
{
357
    auto matcher() const { return match::gelu_erf(&gpu_name); }
kahmed10's avatar
kahmed10 committed
358

359
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
360
361
362
363
364
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

365
        m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
366
367
368
369
370
371
372
373
374
375
    }
};

struct find_add_gelu
{
    auto matcher() const
    {
        return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

376
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
377
378
379
380
381
382
383
384
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
385
        m.replace_instruction(ins, hip_add_gelu{}, args);
kahmed10's avatar
kahmed10 committed
386
387
388
389
390
    }
};

struct find_gelu_new
{
kahmed10's avatar
kahmed10 committed
391
    bool fast_math = true;
kahmed10's avatar
kahmed10 committed
392

393
    auto matcher() const { return match::gelu_tanh(&gpu_name); }
kahmed10's avatar
kahmed10 committed
394

395
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
396
397
398
399
400
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

Paul Fultz II's avatar
Paul Fultz II committed
401
        if(fast_math)
402
            m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
Paul Fultz II's avatar
Paul Fultz II committed
403
        else
404
            m.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
405
406
407
408
409
410
411
412
413
414
    }
};

struct find_add_gelu_new
{
    auto matcher() const
    {
        return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

415
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
416
417
418
419
420
421
422
423
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
424
        m.replace_instruction(ins, hip_add_gelu_new{}, args);
kahmed10's avatar
kahmed10 committed
425
426
427
    }
};

kahmed10's avatar
kahmed10 committed
428
429
430
431
432
433
struct find_add_clip
{
    auto matcher() const
    {
        return match::name(std::unordered_set<std::string>{"gpu::clip", "gpu::clipped_relu"})(
            match::arg(0)(match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
434
                                        match::name("gpu::triadd"),
kahmed10's avatar
kahmed10 committed
435
436
437
438
                                        match::any_of[match::inputs()](match::standard_shape()))
                              .bind("add")));
    }

439
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
440
    {
kahmed10's avatar
kahmed10 committed
441
442
443
444
445
446
447
448
449
450
        auto add_ins  = r.instructions["add"];
        auto ins      = r.result;
        auto ins_args = ins->inputs();
        auto add_args = add_ins->inputs();
        move_standard_front(add_args);
        move_broadcasted_back(add_args);

        // Use the allocation from the clip operator
        add_args.pop_back();
        add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end());
kahmed10's avatar
kahmed10 committed
451
        if(add_ins->name() == "gpu::add")
452
            m.replace_instruction(ins, hip_add_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
453
        else if(add_ins->name() == "gpu::triadd")
454
            m.replace_instruction(ins, hip_triadd_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
455
456
457
    }
};

458
struct find_add_unary
Paul's avatar
Paul committed
459
{
460
461
462
    std::string op_name;
    operation binary_add_op;
    operation ternary_add_op;
Paul's avatar
Paul committed
463
464
    auto matcher() const
    {
465
        return match::name(op_name)(match::arg(0)(
Paul's avatar
Paul committed
466
            match::used_once(),
Paul's avatar
Paul committed
467
            match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
468
                          match::name("gpu::triadd"),
Paul's avatar
Paul committed
469
470
471
                          match::any_of(match::name("@literal"),
                                        match::any_of[match::inputs()](match::standard_shape())))
                .bind("add")));
Paul's avatar
Paul committed
472
    }
Paul's avatar
Paul committed
473

474
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
475
    {
Paul's avatar
Paul committed
476
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
477
478
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
479
480
481
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
482
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
483
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
484
        if(add_ins->name() == "gpu::add")
485
            m.replace_instruction(ins, binary_add_op, args);
kahmed10's avatar
kahmed10 committed
486
        else if(add_ins->name() == "gpu::triadd")
487
            m.replace_instruction(ins, ternary_add_op, args);
Paul's avatar
Paul committed
488
489
490
    }
};

Paul's avatar
Paul committed
491
struct find_triadd
Paul's avatar
Paul committed
492
493
494
{
    auto matcher() const
    {
Paul's avatar
Paul committed
495
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
496
            match::name("gpu::add")(match::used_once()).bind("add"),
Paul's avatar
Paul committed
497
498
499
            match::any(match::any_of(match::name("@literal"),
                                     match::any_of[match::inputs()](match::standard_shape())))
                .bind("input")));
Paul's avatar
Paul committed
500
501
    }

502
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
503
    {
Paul's avatar
Paul committed
504
505
506
507
        auto add_ins   = r.instructions["add"];
        auto input_ins = r.instructions["input"];
        auto ins       = r.result;
        auto args      = add_ins->inputs();
508

Paul's avatar
Paul committed
509
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
510
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2)
Paul's avatar
Paul committed
511
512
            return;
        args.insert(args.begin(), input_ins);
Paul's avatar
Paul committed
513
514
515
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
516
        args.back() = ins->inputs().back();
517
        m.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
518
    }
Paul's avatar
Paul committed
519
520
};

Paul's avatar
Paul committed
521
522
523
524
struct find_mul_add
{
    auto matcher() const
    {
Paul's avatar
Paul committed
525
526
        return match::name("gpu::add")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b")));
Paul's avatar
Paul committed
527
528
    }

529
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
530
    {
Paul's avatar
Paul committed
531
532
533
534
        auto mul_ins = r.instructions["mul"];
        auto b_ins   = r.instructions["b"];
        auto ins     = r.result;
        auto args    = mul_ins->inputs();
Paul's avatar
Paul committed
535
536
537
538
539
540
541
        assert(mul_ins != b_ins);

        move_standard_front(args);
        move_broadcasted_back(args);
        args.insert(std::prev(args.end()), b_ins);

        args.back() = ins->inputs().back();
542
        m.replace_instruction(ins, hip_mul_add{}, args);
Paul's avatar
Paul committed
543
544
545
    }
};

Paul's avatar
Paul committed
546
547
548
549
struct find_mul_add_relu
{
    auto matcher() const
    {
Paul's avatar
Paul committed
550
        return match::name("gpu::relu")(
kahmed10's avatar
kahmed10 committed
551
            match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add")));
Paul's avatar
Paul committed
552
553
    }

554
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
555
556
    {
        auto mul_add_ins = r.instructions["mul_add"];
Paul's avatar
Paul committed
557
558
        auto ins         = r.result;
        auto args        = mul_add_ins->inputs();
Paul's avatar
Paul committed
559
560
561

        // Use the allocation from the relu operator
        args.back() = ins->inputs().back();
562
        m.replace_instruction(ins, hip_mul_add_relu{}, args);
Paul's avatar
Paul committed
563
564
565
    }
};

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
struct miopen_fusion
{
    struct fuse_op_data
    {
        operation op;
        float alpha = 1;
        float beta  = 0;
    };
    struct fuse_op : fuse_op_data, reflect_equality<fuse_op>, reflect_stream<fuse_op>
    {
        template <class Self, class F>
        static auto reflect(Self& self, F f)
        {
            return pack(f(self.op, "op"), f(self.alpha, "alpha"), f(self.beta, "beta"));
        }
    };
    std::vector<fuse_op> ops = {};
    fusion f                 = {};
    std::function<void(context&, const fusion&, const std::vector<argument>&)> execute;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.ops, "ops"));
    }

591
592
593
594
595
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
    value compile(context& ctx, const shape&, std::vector<shape> inputs)
    {
        // Compensate for allocation
        inputs.pop_back();
        std::size_t i = 0;
        f             = fusion(inputs[i]);
        i++;
        std::vector<std::function<void(const fused_operator_args&, const std::vector<argument>&)>>
            invokers;
        for(auto&& fop : ops)
        {
            if(i > inputs.size())
            {
                f = {};
                return {};
            }
            if(fop.op.name() == "convolution")
            {
                auto* mop = f.create_conv(any_cast<op::convolution>(fop.op), inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsConvForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "add")
            {
                auto* mop = f.create_bias(inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsBiasForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "relu")
            {
                auto* mop = f.create_relu();
                invokers.push_back([=](const fused_operator_args& fargs,
                                       const std::vector<argument>&) {
                    miopenSetOpArgsActivForward(fargs.get(), mop, &fop.alpha, &fop.beta, 0, 0, 0);
                });
            }
            else
            {
                f = {};
                return {};
            }
        }
        if(not f.compile(ctx))
        {
            f = {};
            return {};
        }
        execute = [invokers](context& c, const fusion& ff, const std::vector<argument>& args) {
            auto fargs = make_fused_args();
            for(auto&& invoker : invokers)
                invoker(fargs, args);
            ff.execute(c, fargs, args.front(), args.back());
        };
        return {{"workspace", f.get_workspace(ctx).bytes()}};
    }
    void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
    {
        if(not f.empty())
            return;
        auto v = compile(ctx, output_shape, inputs);
        if(not v.is_object())
            MIGRAPHX_THROW("Failed to compile fusion plan");
    }
    std::string name() const { return "gpu::miopen_fusion"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(ops.empty())
            return {};
        // TODO: Check number of arguments
        return ops.front().op.compute_shape({inputs[0], inputs[1]});
    }
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
    {
        execute(ctx, f, args);
        return args.back();
    }
};

Paul's avatar
Paul committed
682
683
684
struct miopen_conv_bias
{
    op::convolution op;
685
686
687
    fusion f          = {};
    fusion::op_t conv = {};
    fusion::op_t bias = {};
Paul's avatar
Paul committed
688

Paul's avatar
Paul committed
689
690
691
692
693
694
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Paul committed
695
696
697
698
699
    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
700
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Paul committed
701
    }
Paul's avatar
Paul committed
702
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
703
    {
Paul's avatar
Paul committed
704
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
705
        float alpha = 1;
Paul's avatar
Paul committed
706
        float beta  = 0;
Paul's avatar
Paul committed
707
708
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
709
        return f.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
710
711
    }

712
713
714
715
716
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
        f    = fusion(inputs[0]);
        conv = f.create_conv(op, inputs[1]);
        bias = f.create_bias(inputs[3]);
717
718
        if(not f.compile(ctx))
            MIGRAPHX_THROW("Failed to compile fusion plan");
719
720
    }

Paul's avatar
Paul committed
721
    shape get_workspace(context& ctx) { return f.get_workspace(ctx); }
Paul's avatar
Paul committed
722
723
724
725
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Paul committed
726
};
727
MIGRAPHX_REGISTER_OP(miopen_conv_bias)
Paul's avatar
Paul committed
728

Paul's avatar
Add cbr  
Paul committed
729
730
731
struct miopen_conv_bias_relu
{
    op::convolution op;
732
733
734
735
    fusion f          = {};
    fusion::op_t conv = {};
    fusion::op_t bias = {};
    fusion::op_t relu = {};
Paul's avatar
Add cbr  
Paul committed
736

Paul's avatar
Paul committed
737
738
739
740
741
742
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Add cbr  
Paul committed
743
744
745
746
747
    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
748
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Add cbr  
Paul committed
749
    }
Paul's avatar
Paul committed
750
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
751
752
    {
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
753
        float alpha = 1;
Paul's avatar
Paul committed
754
        float beta  = 0;
Paul's avatar
Add cbr  
Paul committed
755
756
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
757
758
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
        return f.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
759
    }
760
761
762
763
764
765
766
767
768
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
        f    = fusion(inputs[0]);
        conv = f.create_conv(op, inputs[1]);
        bias = f.create_bias(inputs[3]);
        relu = f.create_relu();
        f.compile(ctx);
    }

Paul's avatar
Paul committed
769
    shape get_workspace(context& ctx) { return f.get_workspace(ctx); }
Paul's avatar
Paul committed
770
771
772
773
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Add cbr  
Paul committed
774
};
775
MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu)
Paul's avatar
Add cbr  
Paul committed
776

Paul's avatar
Paul committed
777
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
778
779
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
780
    return match::name("gpu::add")(
Paul's avatar
Paul committed
781
782
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
783
        ms...);
Paul's avatar
Paul committed
784
785
}

Paul's avatar
Paul committed
786
template <class Op>
787
void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
Paul's avatar
Paul committed
788
789
790
791
792
793
794
795
796
797
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

798
    Op cb{conv_op};
Paul's avatar
Paul committed
799
    // TODO: Insert ws allocation
Paul's avatar
Paul committed
800
    auto ws = cb.get_workspace(ctx);
Paul's avatar
Paul committed
801
    (void)ws;
802
    m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
803
804
}

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
inline auto precompile_name(std::string s) // NOLINT
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(ins->name() != "gpu::precompile_op")
            return false;
        auto op = from_value<operation>(ins->get_operator().to_value().at("op"));
        return (op.name() == s);
    });
}

template <class... Ms>
auto conv_bias_pointwise(Ms... ms)
{
    return precompile_name("pointwise")(
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
        ms...);
}

Paul's avatar
Paul committed
824
struct find_conv_bias
Paul's avatar
Paul committed
825
{
Paul's avatar
Paul committed
826
    context* ctx = nullptr;
Paul's avatar
Paul committed
827
828
    auto matcher() const
    {
kahmed10's avatar
kahmed10 committed
829
830
        return conv_bias(match::none_of(
            match::output(match::name(std::unordered_set<std::string>{"gpu::relu"}))));
Paul's avatar
Paul committed
831
832
    }

833
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
834
    {
835
        apply_conv_bias<miopen_conv_bias>(*ctx, m, r);
Paul's avatar
Paul committed
836
837
838
    }
};

Paul's avatar
Paul committed
839
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
840
841
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
842
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
843

844
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Add cbr  
Paul committed
845
    {
846
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, m, r);
Paul's avatar
Add cbr  
Paul committed
847
848
    }
};
849

850
851
852
853
854
855
856
857
858
859
860
struct find_conv_pointwise
{
    context* ctx = nullptr;
    auto matcher() const
    {
        return precompile_name("pointwise")(
            match::nargs(3),
            match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                    fusable_conv(match::used_once()).bind("conv")));
    }

861
    void apply(module& m, const match::matcher_result& r) const
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
    {
        auto conv_ins    = r.instructions["conv"];
        auto bias_ins    = r.instructions["bias"];
        auto ins         = r.result;
        auto input_ins   = conv_ins->inputs().at(0);
        auto weights_ins = conv_ins->inputs().at(1);
        auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto alloc_ins   = ins->inputs().back();

        module_ref pm = ins->module_inputs().front();

        miopen_fusion op{};
        op.ops.push_back({{conv_op}});
        for(auto&& i : *pm)
        {
            if(i.name()[0] == '@')
                continue;
            auto inputs = to_shapes(i.inputs());
            op.ops.push_back({{i.get_operator()}});
        }
        std::vector<instruction_ref> inputs = {input_ins, weights_ins, bias_ins, alloc_ins};
        auto v                              = op.compile(*ctx, ins->get_shape(), to_shapes(inputs));
        if(not v.is_object())
            return;
        m.replace_instruction(ins, op, inputs);
    }
};

890
891
892
893
894
895
896
897
898
899
struct find_gemm_add
{
    auto matcher() const
    {
        return match::name("gpu::add")(
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

900
    void apply(module& m, const match::matcher_result& r) const
901
902
903
904
905
906
907
908
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
909
        if(not float_equal(gemm.beta, 0))
910
911
912
913
914
915
916
917
918
919
920
921
922
            return;

        if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [](auto i) {
               return not i->get_shape().standard();
           }))
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
923
        if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
924
        {
925
            copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
926
927
928
929
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

930
        gemm.beta = 1;
931
        m.replace_instruction(ins, gemm, inputs);
932
933
934
    }
};

935
936
937
938
939
940
941
struct find_commutative_broadcast
{
    auto matcher() const
    {
        return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape()));
    }

942
    void apply(module& m, const match::matcher_result& r) const
943
944
945
946
947
    {
        auto ins  = r.result;
        auto args = ins->inputs();
        move_broadcasted_back(args);

948
        m.replace_instruction(ins, ins->get_operator(), args);
949
950
951
    }
};

Paul's avatar
Paul committed
952
953
struct find_contiguous
{
Paul's avatar
Format  
Paul committed
954
    auto matcher() const { return match::name("gpu::contiguous"); }
Paul's avatar
Paul committed
955
956
957
958
959
960

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto args = ins->inputs();

Paul's avatar
Format  
Paul committed
961
962
963
964
        m.replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(make_op("contiguous"))}}),
            ins->inputs());
Paul's avatar
Paul committed
965
966
967
    }
};

968
void fuse_ops::apply(module& m) const
Paul's avatar
Paul committed
969
{
970
971
972
973
    match::find_matches(m, find_gelu{}, find_gelu_new{fast_math});
    run_passes(m, {dead_code_elimination{}});
    match::find_matches(m, find_triadd{});
    match::find_matches(m,
kahmed10's avatar
kahmed10 committed
974
                        find_layernorm{},
975
                        find_conv_pointwise{ctx},
976
977
978
979
980
981
982
983
984
985
                        find_conv_bias_relu{ctx},
                        find_conv_bias{ctx},
                        find_add_gelu{},
                        find_add_gelu_new{},
                        find_mul_add{},
                        find_mul_add_relu{},
                        find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}},
                        find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}},
                        find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}},
                        find_add_clip{});
986
987
    run_passes(m, {dead_code_elimination{}});
    match::find_matches(m, find_triadd_layernorm{}, find_gemm_add{}, find_commutative_broadcast{});
Paul's avatar
Paul committed
988
    match::find_matches(m, find_contiguous{});
Paul's avatar
Paul committed
989
}
Paul's avatar
Paul committed
990
991

} // namespace gpu
Paul's avatar
Paul committed
992
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
993
} // namespace migraphx