simplify_algebra.cpp 47.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
Paul's avatar
Paul committed
55
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
56
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
57
58
}

Shucai Xiao's avatar
Shucai Xiao committed
59
60
auto reduction() { return match::name_contains("reduce"); }

61
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
62
63
64
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
65
    {
66
67
68
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
69
    }
Paul's avatar
Paul committed
70

71
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
72
    {
Paul's avatar
Paul committed
73
        auto ins      = r.result;
Paul's avatar
Paul committed
74
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
75
76
77
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
102
103
            return;

104
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
105
        auto new_a = m.insert_instruction(
106
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
107
108
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
109
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
110
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
111
    }
Paul's avatar
Paul committed
112
113
};

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

130
    void apply(module& m, const match::matcher_result& r) const
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
166
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
167

168
        auto new_a = m.insert_instruction(
169
            ins,
170
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
171
            a_ins->inputs().front());
172
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
173
174
175

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
176
            sliced_weights.push_back(m.insert_instruction(
177
178
179
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
180
181
182
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
183
            sliced_weights.push_back(m.insert_instruction(
184
185
186
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
187

188
        auto new_weights =
189
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
190

191
        auto new_conv = m.insert_instruction(
192
193
194
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

195
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
196
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
197
        m.replace_instruction(ins, slice1);
198
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
199
200
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
201
202
203
204
205
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
206
207
208
209
struct find_mul_dot
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
210
211
212
213
        auto is_dot_const_inputs =
            match::name("dot")(match::any_of[match::inputs()](match::is_constant()));
        return match::name("mul")(match::either_arg(0, 1)(
            is_dot_const_inputs.bind("dot"), match::name("broadcast", "multibroadcast").bind("c")));
Paul's avatar
Paul committed
214
215
216
217
    }

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
218
        auto ins     = r.result;
Paul's avatar
Paul committed
219
        auto dot_ins = r.instructions["dot"];
Paul's avatar
Format  
Paul committed
220
221
222
        auto a_ins   = dot_ins->inputs()[0];
        auto b_ins   = dot_ins->inputs()[1];
        auto c_ins   = r.instructions["c"];
Paul's avatar
Paul committed
223
224
225
226
227
228
229
230
231

        std::cout << "find_mul_dot" << std::endl;
        m.debug_print(ins->inputs());
        m.debug_print(ins);

        const auto& c_lens    = c_ins->get_shape().lens();
        const auto& c_strides = c_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
232
        if(std::count_if(c_strides.begin(), c_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
233
234
235
            return;

        auto add_mul_const = [&](instruction_ref x_ins) {
Paul's avatar
Format  
Paul committed
236
            if(not x_ins->can_eval())
Paul's avatar
Paul committed
237
                return m.end();
Paul's avatar
Format  
Paul committed
238
            auto broadcast_v        = c_ins->get_operator().to_value();
Paul's avatar
Paul committed
239
240
            broadcast_v["out_lens"] = x_ins->get_shape().lens();

Paul's avatar
Format  
Paul committed
241
242
            auto cb_ins =
                m.insert_instruction(ins, make_op(c_ins->name(), broadcast_v), c_ins->inputs());
Paul's avatar
Paul committed
243
244
245
            return m.insert_instruction(ins, make_op("mul"), x_ins, cb_ins);
        };

Paul's avatar
Format  
Paul committed
246
247
        if(c_strides.back() == 1)
        {
Paul's avatar
Paul committed
248
249
            b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
250
251
        else if(c_strides[c_strides.size() - 2] == 1)
        {
Paul's avatar
Paul committed
252
253
            a_ins = add_mul_const(a_ins);
        }
Paul's avatar
Format  
Paul committed
254
        else if(c_ins->get_shape().scalar())
Paul's avatar
Paul committed
255
        {
Paul's avatar
Format  
Paul committed
256
            if(a_ins->can_eval())
Paul's avatar
Paul committed
257
258
259
260
                a_ins = add_mul_const(a_ins);
            else
                b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
261
262
        else
        {
Paul's avatar
Paul committed
263
264
265
            return;
        }

Paul's avatar
Format  
Paul committed
266
        if(contains({a_ins, b_ins}, m.end()))
Paul's avatar
Paul committed
267
268
269
270
271
272
273
274
275
276
277
            return;

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

struct find_dot_mul
{
    auto matcher() const
    {
        auto const_broadcast = match::name("broadcast", "multibroadcast")(match::is_constant());
Paul's avatar
Format  
Paul committed
278
279
        auto mul             = match::name("mul")(match::either_arg(0, 1)(
            const_broadcast.bind("d"), match::none_of(match::is_constant()).bind("z")));
Paul's avatar
Paul committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        return match::name("dot")(match::either_arg(0, 1)(mul, match::is_constant().bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = ins->inputs()[0];
        auto b_ins = ins->inputs()[1];
        auto d_ins = r.instructions["d"];
        auto c_ins = r.instructions["c"];
        auto z_ins = r.instructions["z"];

        const auto& d_strides = d_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
295
        if(std::count_if(d_strides.begin(), d_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
296
297
            return;

Paul's avatar
Format  
Paul committed
298
299
300
        if(not d_ins->get_shape().scalar())
        {
            if(d_strides.back() == 1 and not b_ins->can_eval())
Paul's avatar
Paul committed
301
                return;
Paul's avatar
Format  
Paul committed
302
            if(d_strides[d_strides.size() - 2] == 1 and not a_ins->can_eval())
Paul's avatar
Paul committed
303
304
305
                return;
        }

Paul's avatar
Format  
Paul committed
306
        auto broadcast_v        = d_ins->get_operator().to_value();
Paul's avatar
Paul committed
307
308
        broadcast_v["out_lens"] = c_ins->get_shape().lens();

Paul's avatar
Format  
Paul committed
309
310
        auto db_ins =
            m.insert_instruction(ins, make_op(d_ins->name(), broadcast_v), d_ins->inputs());
Paul's avatar
Paul committed
311
312
        auto cd_ins = m.insert_instruction(ins, make_op("mul"), c_ins, db_ins);

Paul's avatar
Format  
Paul committed
313
        if(c_ins == b_ins)
Paul's avatar
Paul committed
314
315
316
317
318
319
        {
            a_ins = z_ins;
            b_ins = cd_ins;
        }
        else
        {
Paul's avatar
Format  
Paul committed
320
            a_ins = cd_ins;
Paul's avatar
Paul committed
321
322
323
324
325
326
327
            b_ins = z_ins;
        }

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

Paul's avatar
Paul committed
328
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
329
330
331
332
333
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
334
335
336
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
337
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
338
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
339
                match::used_once()),
Paul's avatar
Paul committed
340
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
341
342
    }

343
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
344
    {
Paul's avatar
Paul committed
345
        auto ins   = r.result;
Paul's avatar
Paul committed
346
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
347
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
348
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
349
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
350

351
352
353
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
354
355
356
    }
};

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
393
struct find_add_lit_broadcast
Paul's avatar
Paul committed
394
395
396
397
398
399
400
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

401
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
402
403
404
405
406
407
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

408
409
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
410
411
412
413
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
414
{
Paul's avatar
Paul committed
415
416
    auto matcher() const
    {
Paul's avatar
Paul committed
417
        return match::name("add")(
Paul's avatar
Paul committed
418
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
419
420
    }

421
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
422
    {
Paul's avatar
Paul committed
423
424
425
426
427
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
428
429
430

        instruction_ref sumab;

Paul's avatar
Paul committed
431
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
432
433
434
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
435
            auto op     = a_ins->get_operator();
436
            auto presum = m.insert_instruction(
437
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
438
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
439
440
441
        }
        else
        {
442
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
443
444
        }

445
446
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
447
448
449
    }
};

Paul's avatar
Paul committed
450
451
struct find_inner_broadcast
{
452
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
453

454
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
455
    {
456
457
458
459
460
461
462
463
464
465
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
466
467
               return i->get_shape() != inputs.front()->get_shape() and
                      i->get_shape().elements() != 1;
468
           }))
Paul's avatar
Paul committed
469
470
            return;

471
472
473
474
475
476
477
        auto b_it = std::find_if(broadcasts.begin(), broadcasts.end(), [&](auto i) {
            return not i->get_shape().scalar();
        });
        if(b_it == broadcasts.end())
            b_it = broadcasts.begin();
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, (*b_it)->get_operator(), op);
Paul's avatar
Paul committed
478
479
480
    }
};

481
struct find_concat_op
482
483
484
{
    auto matcher() const
    {
485
        return match::name("concat")(match::any_of[match::inputs()](
486
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
487
488
    }

489
490
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
491
    {
492
493
494
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
495
        {
496
            dim += ins->get_shape().lens().at(axis);
497
        }
498
499
500
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
501
502
    }

503
504
505
506
507
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

508
    void apply(module& m, const match::matcher_result& r) const
509
    {
510
511
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
512

513
514
515
516
517
518
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
519
520
            auto op = x->get_operator();
            if(not is_valid_op(op))
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
541
                auto concat =
542
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
543
544
                concats.push_back(concat);
            }
545
            auto y = m.insert_instruction(ins, op, concats);
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
561
            m.replace_instruction(ins, args.front());
562
        else
563
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
564
565
566
    }
};

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
623
624
625
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
626
627
    }

Shucai Xiao's avatar
Shucai Xiao committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

647
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
648
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
665

666
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
667
668
669
670
671
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
672
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
673
674
                }

675
676
677
678
679
680
681
682
683
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

709
    void apply(module& m, const match::matcher_result& r) const
710
    {
Shucai Xiao's avatar
Shucai Xiao committed
711
        auto ins    = r.result;
712
713
714
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
715

716
        for(const auto& group : get_split_groups(m, splits))
717
        {
Shucai Xiao's avatar
Shucai Xiao committed
718
719
720
721
722
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
723
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
724
            }
725
726
727
728
729
730

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
731
            instruction_ref c = m.end();
732
733
            if(start->inputs().size() == 1)
            {
734
                c = m.insert_instruction(std::next(ins), op, ins);
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

760
                move_instructions_back(m, ins, data_args);
761
762
763
764
765
766
767

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
768
                auto concat = m.insert_instruction(
769
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
770
771
772
773
774

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
775
                c               = m.insert_instruction(std::next(ins), op, args);
776
            }
777
            if(c != m.end())
778
779
780
781
782
783
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
784
785
                    auto outputs = i->outputs();
                    for(auto output : outputs)
786
                    {
787
                        if(output->name() != "reshape")
788
                            continue;
789
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
790
                        m.replace_instruction(output, output->get_operator(), x);
791
792
                    }

793
                    m.replace_instruction(i, split->get_operator(), c);
794
795
796
797
798
799
800
801
802
803
804
805
806
807
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

808
    void apply(module& m, const match::matcher_result& r) const
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
837
838
839
840
841
842
843
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
844
845
846
847
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
848
            m.replace_instruction(concat, args.front());
849
        else
850
            m.replace_instruction(concat, concat->get_operator(), args);
851
852
853
    }
};

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

893
    void apply(module& m, const match::matcher_result& r) const
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
922
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
923
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
924
925
926
927
928
929
930
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
931
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
932
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
933
934
935
936
937
938
939
940
                }
                else
                    return;
            }
            else
                return;
        }

941
        auto concat_input =
942
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
943
        auto concat_weights =
944
945
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
946
947
948
    }
};

949
950
951
952
953
954
955
956
957
958
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
959
    return (dots >= 2 or convs >= 2);
960
961
962
963
964
965
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

966
    void apply(module& m, const match::matcher_result& r) const
967
968
969
970
971
972
973
974
975
976
977
978
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
979
            // Check that non-axes match
980
981
982
983
984
985
986
987
988
989
990
991
992
993
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
994
995
996
997
998
999
1000
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

1013
            move_instructions_back(m, input, args);
1014
            // TODO: Check if axes match
1015
            auto concat =
1016
1017
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
1018
1019
1020
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1021
1022
1023
1024
1025
1026
1027
1028
1029
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1030
                int64_t len = arg->get_shape().lens()[axis];
1031
                m.replace_instruction(
1032
1033
1034
1035
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1036
1037
1038
1039
1040
1041
1042
1043
1044
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1045
1046
1047
1048
1049
1050
1051
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1052
    void apply(module& m, const match::matcher_result& r) const
1053
1054
1055
1056
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1057
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1058
1059
1060

        auto args = ins->inputs();

1061
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1062
1063
1064
    }
};

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1107
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1132
1133
1134
1135
1136
1137
1138
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1139
    void apply(module& m, const match::matcher_result& r) const
1140
1141
1142
1143
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1144
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1145
1146
1147

        auto args = ins->inputs();

1148
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1149
1150
1151
    }
};

kahmed10's avatar
kahmed10 committed
1152
1153
1154
1155
1156
1157
1158
1159
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1160
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1161
1162
1163
1164
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1165
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1166
1167
1168
    }
};

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1185
    void apply(module& m, const match::matcher_result& r) const
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1211
1212
1213
1214
1215
1216
1217
1218
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1219
        if(not same_ops(vec_rsp))
1220
1221
1222
1223
1224
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1235
1236
1237

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1238
        if(ait == rsp_strides.end())
1239
1240
1241
        {
            return;
        }
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1255
        // calculate reshape output shape
1256
        std::vector<int64_t> vec_dims(vec_rsp.size());
1257

1258
1259
1260
1261
1262
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1263

1264
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1265

1266
1267
1268
1269
1270
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1271
        auto rsp_ins = m.insert_instruction(
1272
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1273
1274

        // replace the original reshape with slice
1275
1276
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1277
        {
1278
            m.replace_instruction(
1279
1280
1281
1282
1283
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1284
            start += vec_dims[i];
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1297
    void apply(module& m, const match::matcher_result& r) const
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1317
        if(not same_ops(vec_trans))
1318
1319
1320
1321
1322
        {
            return;
        }

        // insert an transpose instruction
1323
        auto tr = m.insert_instruction(
1324
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1325
1326
1327
1328
1329

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1330
        int64_t axis_new = std::distance(perm.begin(), it);
1331
1332
1333
1334
1335
1336
1337

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1338
            m.replace_instruction(
1339
1340
1341
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1342
1343
1344
1345
        }
    }
};

1346
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1347
{
Paul's avatar
Paul committed
1348
    // Run simplifications multiple times
1349
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1350
    {
1351
        match::find_matches(m,
Paul's avatar
Paul committed
1352
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1353
1354
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1355
                            find_add_convs{},
1356
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1357
                            find_mul_conv{},
1358
                            find_mul_slice_conv{},
Paul's avatar
Paul committed
1359
1360
                            find_mul_dot{},
                            find_dot_mul{},
1361
                            find_mul_add{},
1362
1363
1364
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1365
                            find_dot_add{},
1366
1367
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1368
                            find_rsqrt{},
1369
                            find_concat_op{},
1370
                            find_split_concat{},
1371
1372
1373
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1374
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1375
    }
Paul's avatar
Paul committed
1376
}
Paul's avatar
Paul committed
1377

Paul's avatar
Paul committed
1378
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1379
} // namespace migraphx