lowering.cpp 13.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
21
22
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
23
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
24
#include <migraphx/gpu/elu.hpp>
25
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/gpu/gemm.hpp>
27
#include <migraphx/gpu/greater.hpp>
28
#include <migraphx/gpu/hip.hpp>
29
#include <migraphx/gpu/int8_conv_pack.hpp>
30
#include <migraphx/gpu/leaky_relu.hpp>
31
#include <migraphx/gpu/less.hpp>
32
33
34
35
36
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/iterator_for.hpp>
37
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
38
#include <utility>
39
#include <functional>
Khalique's avatar
Khalique committed
40
#include <algorithm>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44
namespace gpu {
Paul's avatar
Paul committed
45
46
47

struct miopen_apply
{
48
    module* prog         = nullptr;
49
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
50
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
51
    instruction_ref last{};
52
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Paul's avatar
Paul committed
53

54
    context& get_context() const
55
56
57
58
59
60
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
61
62
63
64
65
66
67
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

68
69
70
71
72
    void create_output_names()
    {
        this->last = instruction::get_output_alias(std::prev(prog->end()));
        if(this->last->name() == "@return")
        {
73
            const auto& prog_outputs = last->inputs();
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
                prog_output_names[ins] = "#output_" + std::to_string(index++);
            }
        }
    }

89
90
    void init()
    {
91
92
        assert(prog != nullptr);
        assert(pass != nullptr);
93
94

        create_output_names();
Paul's avatar
Paul committed
95

96
97
98
99
100
101
102
103
104
105
106
107
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
108
        add_generic_op("equal");
109
110
111
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
112
113
        add_generic_op("greater");
        add_generic_op("less");
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        add_generic_op("log");
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");

Shucai Xiao's avatar
Shucai Xiao committed
134
        add_extend_op("abs");
135
136
137
138
139
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
140
        add_extend_op("elu");
141
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
142
        add_extend_op("leaky_relu");
143
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
144
        add_extend_op("lrn");
145
        add_extend_op("pad");
146
        add_extend_op("pooling");
147
148
149
150
151
152
153
154
155
156
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
        add_extend_op("softmax");

157
158
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
159
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
160
        add_deconvolution_op();
161
        add_quant_convolution_op();
162
        add_batch_norm_inference_op();
Shucai Xiao's avatar
Shucai Xiao committed
163
        add_neg_op();
164
165
    }

166
167
168
169
    void copy_params()
    {
        if(not pass->offload_copy)
            return;
170

171
172
173
174
        for(auto ins : iterator_for(*prog))
        {
            if(ins->name() != "@param")
                continue;
175

176
177
178
179
180
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
            auto c   = prog->insert_instruction(pos, hip_copy_to_gpu{}, ins, a);
            prog->replace_instruction(ins, c);
        }
181
182
183
184
185

        // return instruction
        auto ret = std::prev(prog->end());
        if(ret->name() == "@return")
        {
186
            const auto& inputs = ret->inputs();
187
188
189

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
190
            for(const auto& in : inputs)
191
192
193
194
195
196
197
198
199
200
            {
                auto p_output = prog->insert_instruction(ret, hip_copy_from_gpu{}, in);
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
            prog->add_instruction(hip_copy_from_gpu{}, ret);
        }
201
202
    }

Paul's avatar
Paul committed
203
204
    void apply()
    {
205
        init();
Paul's avatar
Paul committed
206
207
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
Paul's avatar
Paul committed
208
            auto s = it->get_shape();
209
            if(apply_map.count(it->name()) > 0)
210
            {
211
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
212
            }
Paul's avatar
Paul committed
213
        }
214

215
        copy_params();
Paul's avatar
Paul committed
216
217
    }

Paul's avatar
Paul committed
218
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
219
    {
220
221
        // Instruction's output is an input of the ret instruction
        if(pass->offload_copy)
Paul's avatar
Paul committed
222
        {
223
            auto result = prog->insert_instruction(ins, hip_allocate{s, std::move(tag)});
Paul's avatar
Paul committed
224
225
            return result;
        }
226
227
228
229
230
231
232
233
234
235
236
237

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
            return prog->add_parameter(prog_output_names[ins_alias], s);
        }
        else if(ins == last and tag.empty())
        {
            return prog->add_parameter("output", s);
        }

        return prog->insert_instruction(ins, hip_allocate{s, std::move(tag)});
Paul's avatar
Paul committed
238
239
    }

Shucai Xiao's avatar
Shucai Xiao committed
240
    void add_convolution_op()
Paul's avatar
Paul committed
241
    {
242
243
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
244

245
            auto conv = miopen_convolution{op, make_conv(op)};
246
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
247

248
249
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

            return prog->replace_instruction(
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
266

267
268
269
            return prog->replace_instruction(
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
270
271
    }

272
273
274
275
276
277
278
    template <class Op>
    void add_gemm_op(std::string name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto&& op                         = any_cast<Op>(ins->get_operator());
            auto beta                         = op.beta;
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
279
            if(refs.size() == 2)
280
281
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
282
283
284
285
286
287
288
                beta        = 0;
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
289
                {
Shucai Xiao's avatar
Shucai Xiao committed
290
                    auto output   = insert_allocation(ins, ins->get_shape());
291
292
293
294
                    auto copy_out = prog->insert_instruction(ins, hip_copy{}, refs.back(), output);
                    refs.back()   = copy_out;
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
295
296
297
298
                else
                {
                    refs.push_back(refs.back());
                }
299
300
301
302
303
304
            }

            return prog->replace_instruction(ins, rocblas_gemm<Op>{Op{op.alpha, beta}}, refs);
        });
    }

305
306
307
308
309
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
310
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
311

Shucai Xiao's avatar
Shucai Xiao committed
312
            auto args      = ins->inputs();
313
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
314
315
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
316
            return prog->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
317
318
319
        });
    }

320
321
322
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
323
    {
324
        apply_map.emplace(op_name, [=](instruction_ref ins) {
325
326
327
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
328

329
            return prog->replace_instruction(ins, make_op(gpu_name), refs);
330
        });
Paul's avatar
Paul committed
331
    }
Paul's avatar
Paul committed
332

333
334
335
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
336
    {
337
338
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
339
340
341
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
342

343
            return prog->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
344
        });
Khalique's avatar
Khalique committed
345
346
    }

Shucai Xiao's avatar
Shucai Xiao committed
347
    void add_batch_norm_inference_op()
348
    {
349
350
351
352
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
367
368
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
369
370
371
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
                           [&](auto i) { return prog->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
372

373
            return prog->replace_instruction(ins,
Shucai Xiao's avatar
Shucai Xiao committed
374
                                             miopen_batch_norm_inference{op},
Shucai Xiao's avatar
Shucai Xiao committed
375
                                             input,
Shucai Xiao's avatar
Shucai Xiao committed
376
377
378
379
380
                                             reshapes[0],
                                             reshapes[1],
                                             reshapes[2],
                                             reshapes[3],
                                             output);
Shucai Xiao's avatar
Shucai Xiao committed
381

382
        });
383
    }
Shucai Xiao's avatar
Shucai Xiao committed
384
385
386
387
388
389
390
391
392

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
            auto l0     = prog->add_literal(literal(s, zeros));
            auto output = insert_allocation(ins, s);
393
394
            return prog->replace_instruction(
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
395
396
        });
    }
Paul's avatar
Paul committed
397
398
};

399
void lowering::apply(module& p) const { miopen_apply{&p, this}.apply(); }
Paul's avatar
Paul committed
400
} // namespace gpu
Paul's avatar
Paul committed
401
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
402
} // namespace migraphx