onnx.cpp 23.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
16
#include <migraph/instruction.hpp>
Paul's avatar
Paul committed
17

Paul's avatar
Paul committed
18
namespace migraph {
Paul's avatar
Paul committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
42
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
43
44
45
46
47
48
49
50
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
51
52
        add_generic_op("Add", op::add{});
        add_generic_op("Div", op::div{});
Shucai Xiao's avatar
Shucai Xiao committed
53
        add_generic_op("MatMul", op::dot{});
54
        add_generic_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
55
        add_generic_op("Relu", op::relu{});
56
57
        add_generic_op("Sub", op::sub{});
        add_generic_op("Sum", op::add{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
60
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Paul's avatar
Paul committed
61
62
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
63
64
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
65
66
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
67
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
68
69
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
70
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
71
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
72
73
74
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
75
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

Paul's avatar
Paul committed
92
    template <class T>
Paul's avatar
Paul committed
93
94
95
96
97
98
99
100
101
102
103
    void add_generic_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
            if(args.size() == 2 and contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
Scott Thornton's avatar
Scott Thornton committed
104
105
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
Paul's avatar
Paul committed
106
107
108
109
110
111
112
                    return prog.add_instruction(x, args[0], l);
                }
            }
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
113
    instruction_ref
Paul's avatar
Paul committed
114
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
115
116
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
117
118
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
119
120
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
121
122
    }

Paul's avatar
Paul committed
123
    instruction_ref
Paul's avatar
Paul committed
124
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
125
    {
126
        op::convolution op;
Paul's avatar
Paul committed
127
128
129
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
130
        }
Paul's avatar
Paul committed
131
132
133
134
135
136
137
138
139
140
141
142
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
143
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
144
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
145
        }
Paul's avatar
Paul committed
146
147
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
148

Paul's avatar
Paul committed
149
150
151
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
152
    {
Khalique's avatar
Khalique committed
153
154
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
155
        {
Khalique's avatar
Khalique committed
156
157
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
158
        }
Paul's avatar
Paul committed
159
160
161
162
163
164
165
166
167
168
169
170
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Paul's avatar
Paul committed
171
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
172
173
    }

Paul's avatar
Paul committed
174
    instruction_ref
Paul's avatar
Paul committed
175
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
176
    {
177
        op::reshape op;
Paul's avatar
Paul committed
178
179
180
181
182
183
184
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
185
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
186
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
187
        }
Paul's avatar
Paul committed
188
189
190
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
191
    instruction_ref
Paul's avatar
Paul committed
192
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
193
194
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
195
196
197
198
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
199
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
200
201
    }

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
220
221
222
223
224
225
226
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
248
249
250
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
251
252
253
254
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
255

Paul's avatar
Paul committed
256
    instruction_ref
Paul's avatar
Paul committed
257
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
280
281
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
282
283
284
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
285
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
286
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
287
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
288
        }
Shucai Xiao's avatar
Shucai Xiao committed
289
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
290
291
    }

292
    instruction_ref
Paul's avatar
Paul committed
293
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
294
    {
Scott Thornton's avatar
Scott Thornton committed
295
296
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
297
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
298
        bool is_test                                      = false;
299
300
301
302
303
304
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
305
            momentum = parse_value(attributes.at("momentum")).at<float>();
306
307
308
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
309
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
310
311
312
        }
        if(contains(attributes, "spatial"))
        {
313
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
314
315
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
316
        }
Paul's avatar
Paul committed
317
        (void)is_test;
Paul's avatar
Paul committed
318
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
319
        return prog.add_instruction(op, std::move(args));
320
321
    }

322
323
324
325
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
326
        float alpha = 0.01; // default alpha val for leaky relu
327
328
329
330
331
332
333
334
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
352

Khalique's avatar
Khalique committed
353
354
355
356
357
358
359
360
361
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
            migraph::literal{migraph::shape{migraph::shape::float_type, {bias.size()}}, bias});

        auto scale_tensor = prog.add_instruction(migraph::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraph::op::mul{}, args.front(), scale_tensor);
        auto bias_bcast   = prog.add_instruction(migraph::op::broadcast{1, input_shape}, bias_vals);
        return prog.add_instruction(migraph::op::add{}, img_scaled, bias_bcast);
    }
Khalique's avatar
Khalique committed
362

Paul's avatar
Paul committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
382
383
384
385
386
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
387
388
389
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
390
391
392
393
394
395
396
397
398
399
400
401
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
402
403
404
        }
        for(auto&& p : nodes)
        {
405
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
406
407
408
        }
    }

Paul's avatar
Paul committed
409
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
410
    {
Paul's avatar
Paul committed
411
        if(name.empty())
Paul's avatar
Paul committed
412
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
413
414
415
416
417
418
419
420
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
421
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
422
                    assert(name != iname);
Paul's avatar
Paul committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

452
453
454
455
456
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
Paul's avatar
Paul committed
457
458
459
460
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
461
462
463
464
        }
        return node.name();
    }

Paul's avatar
Paul committed
465
466
467
468
469
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
470
            result[get_name(node)] = node;
Paul's avatar
Paul committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
496
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
497
498
499
500
501
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
502
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
503
504
505
506
507
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
508
509
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
510
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
531
        }
Paul's avatar
Paul committed
532
533
534
535
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
536
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
537
538
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
539
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
540
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
541
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
542
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
543
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
544
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
545
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
546
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
547
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
548
549
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
550
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
551
552
553
554
555
556
557
558
559
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
560
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
593
        auto&& tensor_dims = t.tensor_type().shape().dim();
594
595
596
597
598
599
600
601
602
        std::transform(
            tensor_dims.begin(), tensor_dims.end(), std::back_inserter(dims), [](auto&& d) {
                if(not d.has_dim_value())
                {
                    long default_batch_size = 1; // FIXME
                    return default_batch_size;
                }
                return d.dim_value();
            });
Paul's avatar
Paul committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
628
} // namespace migraph