evaluator.py 11.5 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Leo Gao's avatar
Leo Gao committed
3
import random
Leo Gao's avatar
Leo Gao committed
4
import lm_eval.metrics
5
6
7
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
8
import lm_eval.decontamination
9
import numpy as np
10
from lm_eval.utils import positional_deprecated
researcher2's avatar
researcher2 committed
11
from lm_eval.decontamination.decontaminate import get_train_overlap
12

13
@positional_deprecated
14
def simple_evaluate(model, model_args=None, tasks=[],
15
                    num_fewshot=0, batch_size=None, device=None,
16
                    no_cache=False, limit=None, bootstrap_iters=100000,
Leo Gao's avatar
Leo Gao committed
17
                    description_dict=None, decontamination_ngrams_path=None):
18
    """Instantiate and evaluate a model on a list of tasks.
19

20
21
22
23
24
25
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
        String arguments for each model class, see LM.create_from_arg_string. 
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
26
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
27
28
29
30
31
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
32
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
33
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
34
        Whether or not to cache
35
36
37
38
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
39
    :param description_dict: dict[str, str]
40
        Dictionary of custom task descriptions of the form: `task_name: description` 
41
    :return
42
        Dictionary of results
43
    """
44
45
46
    random.seed(1234)
    np.random.seed(1234)

47
48
49
50
51
52
53
54
55
56
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
        if model_args is None: model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(model_args, {
            'batch_size': batch_size, 'device': device
        })
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
57
58

    if not no_cache:
59
60
61
        lm = lm_eval.base.CachingLM(
            lm, 'lm_cache/' + model + '_' + model_args.replace('=', '-').replace(',', '_').replace('/', '-') + '.db'
        )
62
    
63
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
64

65
66
67
68
69
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
70
        description_dict=description_dict,
Leo Gao's avatar
Leo Gao committed
71
        decontamination_ngrams_path=decontamination_ngrams_path, 
72
    )
73
74
75
76
77
78
79
80
81
82

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
83
84
        "bootstrap_iters": bootstrap_iters,
        "description_dict": description_dict
85
86
87
    }

    return results
Leo Gao's avatar
Leo Gao committed
88

89
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
90

91
@positional_deprecated
92
def evaluate(lm, task_dict, provide_description=None, num_fewshot=0, limit=None, bootstrap_iters=100000, description_dict=None,
Leo Gao's avatar
Leo Gao committed
93
             decontamination_ngrams_path=None):
94
95
96
97
98
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
99
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
100
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
101
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
102
103
104
105
106
107
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
108
    :param description_dict: dict[str, str]
109
        Dictionary of custom task descriptions of the form: `task_name: description` 
110
111
112
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
113
114
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

115
116
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
117
118
119
    if provide_description is not None:
        # nudge people to not specify it at all
        print("WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict")
120

Leo Gao's avatar
Leo Gao committed
121
    decontaminate = decontamination_ngrams_path is not None
122

123
124
125
126
127
    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
        if(task.has_validation_docs() or task.has_test_docs())
    ]
Leo Gao's avatar
Leo Gao committed
128
129

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
130
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
131
132
133
134

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

135
136
    overlaps = collections.defaultdict(list) # {task_name: contaminated_docs}

137
138
139
140
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
141
142
143
144

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

145
146
    docs_for_decontamination = collections.defaultdict(list)

147
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
148
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
149
        versions[task_name] = task.VERSION
150
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
151
152
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
153
            task_doc_func = task.test_docs
154
            task_set = "test" # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
155
        elif task.has_validation_docs():
156
            task_set = "val" # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
157
            task_doc_func = task.validation_docs
158
159
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
160

Leo Gao's avatar
Leo Gao committed
161
162
163
164
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
165
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
166

167
168
        description = description_dict[task_name] if description_dict and task_name in description_dict else ""

Leo Gao's avatar
Leo Gao committed
169
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
170
171
172
173

            if decontaminate and task.should_decontaminate():
                docs_for_decontamination[(task_name, task_set)].append(task.doc_to_decontamination_query(doc))

Leo Gao's avatar
Leo Gao committed
174
175
176
177
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
                doc=doc,
                num_fewshot=num_fewshot,
178
179
                rnd=rnd,
                description=description
Leo Gao's avatar
Leo Gao committed
180
181
            )
            reqs = task.construct_requests(doc, ctx)
182
183
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
184
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
185
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
186
187
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
188
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
189

190
191
192
    # Compare all tasks/sets at once to ensure a single training set scan
    if decontaminate:
        print("Finding train/test overlap, please wait...")
researcher2's avatar
researcher2 committed
193
        overlaps = get_train_overlap(docs_for_decontamination, decontamination_ngrams_path, limit)
194

Leo Gao's avatar
Leo Gao committed
195
196
197
198
199
    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
200
201
202
203
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
204

Leo Gao's avatar
Leo Gao committed
205
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        resps = getattr(lm, reqtype)([req.args for req in reqs])
        resps = [x if req.index is None else x[req.index] for x, req in zip(resps, reqs)]

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
    
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
225
226
227
228
229

            # Re-use the evaluation for the decontaminated set by just ignoring the overlaps
            if decontaminate and task_name in overlaps:
                if doc_id not in overlaps[task_name]:
                    vals[(task_name, metric + decontaminate_suffix)].append(value)
Leo Gao's avatar
Leo Gao committed
230
231
232
233
    
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
234
235
236
237
        real_metric = metric # key when looking up the metric with task.aggregation
        if metric.endswith(decontaminate_suffix):
            real_metric = metric.replace(decontaminate_suffix, "") # decontaminated still uses the same metric
        results[task_name][metric] = task.aggregation()[real_metric](items)
Leo Gao's avatar
Leo Gao committed
238

239
240
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
241

242
        stderr = lm_eval.metrics.stderr_for_metric(
243
            metric=task.aggregation()[real_metric],
244
245
            bootstrap_iters=min(bootstrap_iters, 1000) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters,
        )
246
        
Leo Gao's avatar
Leo Gao committed
247
248
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Leo Gao's avatar
Leo Gao committed
249
    
Leo Gao's avatar
Leo Gao committed
250
    return {
251
252
        "results": dict(results),
        "versions": dict(versions)
Leo Gao's avatar
Leo Gao committed
253
    }
254
255
256


def make_table(result_dict):
257
    """Generate table of results."""
258
259
260
261
262
263
264
265
266
267
268
269
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
270
271
            if m.endswith("_stderr"):
                continue
272
273
274
275
276
277
278
279
280
281
282
283
284
285

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
                values.append([k, version, m, '%.4f' % v, '±', '%.4f' % se])
            else:
                values.append([k, version, m, '%.4f' % v, '', ''])
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

286
    return md_writer.dumps()