evaluator.py 7.32 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
3
import numpy as np
Leo Gao's avatar
Leo Gao committed
4
import random
5
import lm_eval.api.metrics
6
7
import lm_eval.models
import lm_eval.tasks
8
import lm_eval.api
9
from lm_eval.utils import positional_deprecated, run_task_tests, make_table, get_git_commit_hash
10

Fabrizio Milo's avatar
Fabrizio Milo committed
11

12
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
13
14
15
16
17
18
19
20
21
22
23
24
25
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    check_integrity=False,
    decontamination_ngrams_path=None,
):
26

27
    """Instantiate and evaluate a model on a list of tasks.
28

29
30
31
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
32
        String arguments for each model class, see LM.create_from_arg_string.
33
34
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
35
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
36
37
38
39
40
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
41
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
42
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
43
        Whether or not to cache
44
45
46
47
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
48
49
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
50
    :return
51
        Dictionary of results
52
    """
53
54
55
    random.seed(1234)
    np.random.seed(1234)

56
57
58
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
59
60
        if model_args is None:
            model_args = ""
61
        lm = lm_eval.api.model.get_model(model).create_from_arg_string(
Fabrizio Milo's avatar
Fabrizio Milo committed
62
63
            model_args, {"batch_size": batch_size, "device": device}
        )
64
    else:
65
        assert isinstance(model, lm_eval.api.model.LM)
66
        lm = model
67

68
    task_dict = lm_eval.api.task.get_task_dict(tasks, num_fewshot=num_fewshot)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
69

Stephen Hogg's avatar
Stephen Hogg committed
70
    if check_integrity:
71
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
72

73
74
75
76
77
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
78
        bootstrap_iters=bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
79
        decontamination_ngrams_path=decontamination_ngrams_path,
80
    )
81
82
83
84
85
86
87
88
89
90

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
91
        "bootstrap_iters": bootstrap_iters,
92
    }
93
    results["git_hash"] = get_git_commit_hash()
94
95

    return results
Leo Gao's avatar
Leo Gao committed
96

Fabrizio Milo's avatar
Fabrizio Milo committed
97

98
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
99

Fabrizio Milo's avatar
Fabrizio Milo committed
100

101
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
102
103
104
105
106
107
108
109
def evaluate(
    lm,
    task_dict,
    num_fewshot=0,
    limit=None,
    bootstrap_iters=100000,
    decontamination_ngrams_path=None,
):
110
111
112
113
114
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
115
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
116
117
118
119
120
121
122
123
124
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
    :return
        Dictionary of results
    """
125

Leo Gao's avatar
Leo Gao committed
126
    decontaminate = decontamination_ngrams_path is not None
127

Leo Gao's avatar
Leo Gao committed
128
    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
129
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
130
131
132
133
134
135

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

    docs = {}

136
    # get lists of each type of request
137
    for task_name, task in task_dict.items():
Leo Gao's avatar
Leo Gao committed
138
        versions[task_name] = task.VERSION
139
    
Leo Gao's avatar
Leo Gao committed
140
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
141
142
143
144
145
146
147
148
        # task_docs = list(task_doc_func())
        # rnd = random.Random()
        # rnd.seed(42)
        # rnd.shuffle(task_docs)

        # for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
        task.build_all_requests(limit=limit)
        # aggregate Instances by LM method requested to get output.
149
150
        reqtype = "loglikelihood" if task.OUTPUT_TYPE == "multiple_choice" else task.OUTPUT_TYPE #TODO: this is hacky, fix in task.py
        requests[reqtype].extend(task.instances) 
151
152
    
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
153
154
    # execute each type of request
    for reqtype, reqs in requests.items():
Leo Gao's avatar
Leo Gao committed
155
        print("Running", reqtype, "requests")
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
        
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_name, task in task_dict.items():
        task.apply_filters()


    ### Collect values of metrics on all datapoints ###
    # TODO: make metric configurable, add metric registry 
Leo Gao's avatar
Leo Gao committed
176
177
178
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
179
180
181
182
183
184
185
    for task_name, task in task_dict.items():
        # calculate values for each filter setup (TODO: make getting list of keys cleaner)
        # TODO: make it possible to use a different metric per key
        for key in task.instances[0].filtered_resps.keys():
            for doc_id, doc in enumerate(itertools.islice(task.test_docs(), 0, limit) if task.has_test_docs() else task.validation_docs()):
                # subset instances to only this document id ; sort by idx
                requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
186
                requests.sort(key=lambda x: x.idx)
187
188
189
190
191
192
193
194
195
                metrics = task.process_results(doc, [req.filtered_resps[key] for req in requests])
                for metric, value in metrics.items():
                    vals[(task_name, key, metric)].append(value)
    


    ### Aggregate results over all datapoints ###
    # aggregate results ; run bootstrap CIs
    for (task_name, key, metric), items in vals.items():
Leo Gao's avatar
Leo Gao committed
196
        task = task_dict[task_name]
197
        results[task_name][metric + " - filter=" + key] = task.aggregation()[metric](items)
Leo Gao's avatar
Leo Gao committed
198

199
200
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
201

202
203
        stderr = lm_eval.api.metrics.stderr_for_metric(
            metric=task.aggregation()[metric],
Fabrizio Milo's avatar
Fabrizio Milo committed
204
205
206
            bootstrap_iters=min(bootstrap_iters, 1000)
            if metric in ["bleu", "chrf", "ter"]
            else bootstrap_iters,
207
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
208

Leo Gao's avatar
Leo Gao committed
209
        if stderr is not None:
210
            results[task_name][metric + " - filter=" + key + "_stderr"] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
211
212

    return {"results": dict(results), "versions": dict(versions)}