evaluator.py 30.2 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
18
19
from lm_eval.evaluator_utils import (
    consolidate_results,
    get_sample_size,
20
    get_subtask_list,
21
    get_task_list,
22
    prepare_print_tasks,
23
24
25
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
26
from lm_eval.loggers import EvaluationTracker
27
from lm_eval.loggers.utils import add_env_info, get_git_commit_hash
28
29
30
31
32
33
from lm_eval.tasks import (
    ConfigurableGroup,
    ConfigurableTask,
    TaskManager,
    get_task_dict,
)
34
35
36
37
38
39
40
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
41

Fabrizio Milo's avatar
Fabrizio Milo committed
42

43
44
45
46
47
if TYPE_CHECKING:
    from lm_eval.api.model import LM
    from lm_eval.tasks import Task


48
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
49
50
def simple_evaluate(
    model,
51
52
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
53
54
55
56
57
    num_fewshot: Optional[int] = None,
    batch_size: Optional[int] = None,
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
58
59
60
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
61
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
62
63
64
65
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
66
67
68
69
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
    apply_chat_template: bool = False,
    fewshot_as_multiturn: bool = False,
70
71
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
72
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
73
    predict_only: bool = False,
74
75
76
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
77
    fewshot_random_seed: int = 1234,
Fabrizio Milo's avatar
Fabrizio Milo committed
78
):
79
    """Instantiate and evaluate a model on a list of tasks.
80

81
82
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
83
84
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
85
        Ignored if `model` argument is a LM object.
86
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
87
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
88
89
    :param num_fewshot: int
        Number of examples in few-shot context
90
    :param batch_size: int or str, optional
91
        Batch size for model
92
93
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
94
    :param device: str, optional
95
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
96
97
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
98
99
100
101
102
103
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
104
105
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
106
    :param bootstrap_iters:
107
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
108
109
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
110
    :param write_out: bool
111
112
113
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
114
115
116
117
118
119
    :param system_instruction: str
        System instruction to be applied to the prompt
    :param apply_chat_template: bool
        If True, apply chat template to the prompt
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
120
121
122
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
123
124
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
125
126
127
128
129
130
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
131
132
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
133

134
    :return
135
        Dictionary of results
136
    """
137
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
138
    start_date = time.time()
139

140
141
142
143
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

144
    seed_message = []
145
146
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
147
        seed_message.append(f"Setting random seed to {random_seed}")
148
149
150
        random.seed(random_seed)

    if numpy_random_seed is not None:
151
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
152
153
154
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
155
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
156
157
        torch.manual_seed(torch_random_seed)

158
159
160
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

161
162
    if tasks is None:
        tasks = []
163
164
165
166
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
167

lintangsutawika's avatar
lintangsutawika committed
168
169
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
170
        eval_logger.warning(
171
172
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
173
        )
lintangsutawika's avatar
lintangsutawika committed
174
175
176
        if gen_kwargs == "":
            gen_kwargs = None

177
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
178
        if model_args is None:
179
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
180
            model_args = ""
181

182
        if isinstance(model_args, dict):
183
184
185
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
186
187
188
189
190
191
192
193
194
195
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
196
197
198
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
199
200
201
202
203
204
205
206
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
207
    else:
208
209
        if not isinstance(model, lm_eval.api.model.LM):
            raise TypeError
210
        eval_logger.info("Using pre-initialized model")
211
        lm = model
212

haileyschoelkopf's avatar
haileyschoelkopf committed
213
    if use_cache is not None:
214
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
215
216
217
218
219
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
220
221
222
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
223
224
        )

225
226
227
228
    if task_manager is None:
        task_manager = TaskManager(verbosity)

    task_dict = get_task_dict(tasks, task_manager)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
229

lintangsutawika's avatar
lintangsutawika committed
230
    def _adjust_config(task_dict, predict_only):
231
232
233
234
235
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
236
                    **{task_name: _adjust_config(task_obj, predict_only)},
237
                }
Stephen Hogg's avatar
Stephen Hogg committed
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
            else:
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
267
268
269
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
270
                        task_obj.set_config(key="num_fewshot", value=0)
271
272
273
274
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)
                eval_logger.info(
                    f"Setting fewshot random generator seed to {fewshot_random_seed}"
Baber Abbasi's avatar
Baber Abbasi committed
275
                )
276

277
278
279
280
                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

lintangsutawika's avatar
lintangsutawika committed
281
    task_dict = _adjust_config(task_dict, predict_only)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
282

Stephen Hogg's avatar
Stephen Hogg committed
283
    if check_integrity:
284
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
285

KonradSzafer's avatar
KonradSzafer committed
286
287
288
289
290
291
292
293
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
            chat_template=lm.chat_template if apply_chat_template else None,
        )

294
295
296
297
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
298
299
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
300
        bootstrap_iters=bootstrap_iters,
301
        write_out=write_out,
302
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
303
304
305
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
306
        verbosity=verbosity,
307
    )
308

309
    if lm.rank == 0:
310
311
312
313
314
315
316
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

317
318
        # add info about the model and few shot config
        results["config"] = {
319
            "model": model_name,
320
321
            "model_args": model_args,
        }
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
337
338
339
340
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
341
342
            }
        )
343
        results["git_hash"] = get_git_commit_hash()
344
        results["date"] = start_date
345
        add_env_info(results)  # additional environment info to results
346
347
348
        return results
    else:
        return None
349

Leo Gao's avatar
Leo Gao committed
350

351
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
352
def evaluate(
353
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
354
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
355
    limit: Optional[int] = None,
356
357
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
358
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
359
360
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
361
362
363
    system_instruction: Optional[str] = None,
    apply_chat_template: bool = False,
    fewshot_as_multiturn: bool = False,
364
    verbosity: str = "INFO",
Fabrizio Milo's avatar
Fabrizio Milo committed
365
):
366
367
368
369
370
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
371
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
372
373
374
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
375
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
376
    :param write_out: bool
377
378
379
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
380
381
382
383
384
385
    :param system_instruction: str
        System instruction to be applied to the prompt
    :param apply_chat_template: bool
        If True, apply chat template to the prompt
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
386
387
388
    :return
        Dictionary of results
    """
389

390
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
391

392
    # tracks all Instances/requests a model must generate output on.
393
    requests = defaultdict(list)
394
395
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
396
    padding_requests = defaultdict(int)
397

398
    # get lists of group hierarchy and each type of request
399
    eval_tasks = get_task_list(task_dict)
400
    if not log_samples:
401
        if not all(
402
403
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
404
405
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
406
407
408
    for task_output in eval_tasks:
        task: Task = task_output.task
        limit = get_sample_size(task, limit)
409
410
411
412
413
414
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
415
416
417
418
            system_instruction=system_instruction,
            apply_chat_template=apply_chat_template,
            fewshot_as_multiturn=fewshot_as_multiturn,
            lm=lm,
419
        )
420
        eval_logger.debug(
421
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
422
423
        )
        if write_out:
424
            print_writeout(task)
425
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
426
427
428
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
429
430

        if lm.world_size > 1:
431
432
433
434
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
435
436
437
438
439
440
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
441
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
442
            numpad = max(gathered_item) - gathered_item[lm.rank]
443
444
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
445

446
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
447
448
    # execute each type of request
    for reqtype, reqs in requests.items():
449
        eval_logger.info(f"Running {reqtype} requests")
450
451
452
453
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
454

455
456
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
457
458
                cloned_reqs.extend([req] * req.repeats)

459
460
461
462
463
464
465
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

466
467
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
468

469
470
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
471
472
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
473
474
    for task_output in eval_tasks:
        task = task_output.task
475
476
        task.apply_filters()

477
478
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
479
        # TODO: make it possible to use a different metric per filter
480
        # Pre-process task.instances to group by doc_id
481
        instances_by_doc_id = defaultdict(list)
482
483
484
485
486
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
487
        # iterate over different filters used
488
489
490
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
491
            )
492
            for doc_id, doc in doc_iterator:
493
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
494
                metrics = task.process_results(
495
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
496
                )
497
498
499
500
501
502
503
504
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
505
506
507
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
508
509
510
511
512
513
514
515
516
517
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
518
519
                    }
                    example.update(metrics)
520
                    task_output.logged_samples.append(example)
521
                for metric, value in metrics.items():
522
                    task_output.sample_metrics[(metric, filter_key)].append(value)
523

524
525
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
526
        # first gather logged samples across all ranks
527
528
529
530
531
532
533
534
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
535
                )
536

537
538
539
540
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
541

542
543
544
545
546
547
548
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
549
                )
550
551
552
553
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
554

555
    if RANK == 0:
556
557
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
558
559
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
560
561
562
563
564
565
566
567
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
568

569
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
570
        if bool(results):
571

572
573
            def process_group(
                results,
lintangsutawika's avatar
lintangsutawika committed
574
                versions,
575
576
577
                task_dict,
                task_root=None,
                show_group_table=False,
578
                task_aggregation_list=None,
579
            ):
580
581
582
                if task_root is None:
                    task_root = {}

583
584
                if task_aggregation_list is None:
                    task_aggregation_list = {}
585
586

                for group_or_task, group_or_task_info in task_dict.items():
587
                    # Convert to string
588
589
                    if isinstance(group_or_task, ConfigurableGroup):
                        group_config = group_or_task.config
lintangsutawika's avatar
lintangsutawika committed
590
                        group_or_task = group_or_task.task_id
591
592
                    else:
                        group_config = None
593

594
595
                    if isinstance(group_or_task_info, ConfigurableTask):
                        if task_root:
596
                            task_aggregation_list.setdefault(task_root, []).append(
lintangsutawika's avatar
lintangsutawika committed
597
                                group_or_task_info.task_id
598
                            )
599
                    else:
lintangsutawika's avatar
lintangsutawika committed
600
601
602
603
                        (
                            results,
                            versions,
                            show_group_table,
604
                            _task_aggregation_list,
lintangsutawika's avatar
lintangsutawika committed
605
                        ) = process_group(
606
                            results,
lintangsutawika's avatar
lintangsutawika committed
607
                            versions,
608
609
610
                            group_or_task_info,
                            group_or_task,
                            show_group_table,
611
                            task_aggregation_list,
612
                        )
613
                        if task_root:
614
615
                            task_aggregation_list.setdefault(task_root, []).extend(
                                task_aggregation_list.get(group_or_task, [])
616
                            )
617

lintangsutawika's avatar
lintangsutawika committed
618
619
620
                        if (group_config is None) or (
                            group_config["aggregate_metric"] is False
                        ):
621
622
623
624
625
626
627
                            results[group_or_task][" "] = " "
                            continue

                        show_group_table = (
                            show_group_table | group_config["aggregate_metric"]
                        )

628
                        task_list = _task_aggregation_list[group_or_task]
lintangsutawika's avatar
lintangsutawika committed
629

630
631
632
633
634
                        metric_list = list(
                            {
                                key
                                for task in task_list
                                for key in results[task].keys()
635
                                if "_stderr" not in key
636
                                and key not in ["task", "alias", "samples"]
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
                            }
                        )
                        for metric in metric_list:
                            stderr = "_stderr,".join(metric.split(","))

                            # gather metrics, sizes, and stderrs from subtasks
                            metrics = [
                                results[task][metric]
                                for task in task_list
                                if metric in results[task]
                            ]  # TODO: copy?
                            stderrs = [
                                results[task][stderr]
                                for task in task_list
                                if stderr in results[task]
                            ]
                            sizes = [
                                results[task]["samples"]
                                for task in task_list
                                if metric in results[task]
                            ]

                            # compute group's pooled metric and stderr
660
                            results[group_or_task][
661
662
663
664
665
666
667
668
                                metric
                            ] = lm_eval.api.metrics.aggregate_subtask_metrics(
                                metrics,
                                sizes,
                                group_config["weight_by_size"],
                            )
                            # TODO: calculate grouped metric using aggregation fn
                            if "N/A" in stderrs:
669
                                results[group_or_task][stderr] = "N/A"
670
                            else:
671
                                results[group_or_task][
672
                                    stderr
673
674
675
                                ] = lm_eval.api.metrics.pooled_sample_stderr(
                                    stderrs, sizes
                                )
676
677
678
679
                                # TODO: allow GroupConfigs to choose which variance formula is used, for back-compatibility
                                # To use the old (likely incorrect) variance formula, comment out the above and uncomment this line:
                                # results[group][stderr] = lm_eval.api.metrics.combined_sample_stderr(stderrs, sizes, metrics=metrics)

680
                            results[group_or_task]["samples"] = sum(sizes)
lintangsutawika's avatar
lintangsutawika committed
681
682
683
684
685
                            group_metadata = group_config.get("metadata", None)
                            if group_metadata is not None:
                                versions[group_or_task] = group_metadata.get(
                                    "version", None
                                )
686
                return results, versions, show_group_table, task_aggregation_list
687

688
            results, versions, show_group_table, *_ = process_group(
lintangsutawika's avatar
lintangsutawika committed
689
                results, versions, task_dict
690
691
            )

692
        results_agg, group_agg = prepare_print_tasks(task_dict, results)
693
694
        subtask_list = get_subtask_list(task_dict)

695
696
697
698
699
700
701
702
703
        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            for task in task_list:
                for m, h in higher_is_better[task].items():
                    if m not in _higher_is_better.keys():
                        _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
704
705
706
707
708
709
710
711
712
713

                    if (
                        m in _higher_is_better
                        and _higher_is_better[m] is not None
                        and _higher_is_better[m] != h
                    ):
                        eval_logger.warning(
                            f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                        )
                        _higher_is_better[m] = None
714
            higher_is_better[group] = _higher_is_better
715

716
        results_dict = {
717
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
718
719
720
721
722
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
723
            "group_subtasks": dict(reversed(subtask_list.items())),
724
725
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
726
            "n-shot": dict(sorted(num_fewshot.items())),
727
            "higher_is_better": dict(sorted(higher_is_better.items())),
728
729
730
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
731
732
733
734
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
735
736
737
                }
                for task_output in eval_tasks
            },
738
        }
739
740
741
742
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
743

744
745
    else:
        return None
746
747
748
749


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
750
751
752
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
753
754
755
    }

    return request_caching_args